Часы электронные светодиодные. Часы для улицы на светодиодах Часы на светодиодах своими руками для улицы

Часы электронные светодиодные. Часы для улицы на светодиодах Часы на светодиодах своими руками для улицы

На фото прототип, собранный мной для отладки программы, которая будет управлять всем этим хозяйством. Вторая arduino nano в верхнем правом углу макетки не относится к проекту и торчит там просто так, внимание на нее можно не обращать.

Немного о принципе работы: ардуино берет данные у таймера DS323, перерабатывает их, определяет уровень освещенности с помощью фоторезистора, затем все посылает на MAX7219, а она в свою очередь зажигает нужные сегменты с нужной яркостью. Так же с помощью трех кнопок можно выставить год, месяц, день, и время по желанию. На фото индикаторы отображают время и температуру, которая взята с цифрового термодатчика

Основная сложность в моем случае - это то, что 2.7 дюймовые индикаторы с общим анодом, и их надо было во первых как то подружить с max7219, которая заточена под индикаторы с общим катодом, а во вторых решить проблему с их питанием, так как им нужно 7,2 вольта для свечения, чего одна max7219 обеспечить не может. Попросив помощи на одном форуме я получил таки ответ.

Решение на скриншоте:


К выходам сегментов из max7219 цепляется микросхемка , которая инвертирует сигнал, а к каждому выводу, который должен подключаться к общему катоду дисплея цепляется схемка из трех транзисторов, которые так же инвертируют его сигнал и повышают напряжение. Таким образом мы получаем возможность подключить к max7219 дисплеи с общим анодом и напряжением питания более 5 вольт

Для теста подключил один индикатор, все работает, ничего не дымит

Начинаем собирать.

Схему решил разделить на 2 части из-за огромного количества перемычек в разведенном моими кривыми лапками варианте, где все было на одной плате. Часы будут состоять из блока дисплея и блока питания и управления. Последний было решено собрать первым. Эстетов и бывалых радиолюбителей прошу не падать в обморок из-за жестокого обращения с деталями. Покупать принтер ради ЛУТа нет никакого желания, поэтому делаю по старинке - тренируюсь на бумажке, сверлю отверстия по шаблону, рисую маркером дорожки, затем травлю.

Принцип крепления индикаторов оставил тот же, как и на .

Размечаем положение индикаторов и компонентов, с помощью шаблона из оргстекла, сделанного для удобства.

Процесс разметки







Затем с помощью шаблона сверлим отверстия в нужных местах и примеряем все компоненты. Все встало безупречно.

Рисуем дорожки и травим.




купание в хлорном железе

Готово!
плата управления:


плата индикации:


Плата управления получилась отлично, на плате индикации не критично сожрало дорожку, это поправимо, настало время паять. В этот раз я лишился SMD-девственности, и включил 0805 компоненты в схему. Худо-бедно первые резисторы и конденсаторы были припаяны на места. Думаю дальше набью руку, будет легче.
Для пайки использовал флюс, который купил . Паять с ним одно удовольствие, спиртоканифоль использую теперь только для лужения.

Вот готовые платы. На плате управления имеется посадочное место для ардуино нано, часов, а так же выходы для подключения к плате дисплея и датчики (фоторезистор для автояркости и цифровой термометр ds18s20) и блок питания на с регулировкой выходного напряжения (для больших семисегментников) и для питания часов и ардуино, на плате индикации находятся посадочные гнезда для дисплеев, панельки для max2719 и uln2003a, решение для питания четырех больших семисегментников и куча перемычек.




плата управления сзади

Плата индикации сзади:

Ужасный монтаж смд:


Запуск

После припаивания всех шлейфов, кнопок и датчиков пришло время все это включить. Первый запуск выявил несколько проблем. Не светился последний большой индикатор, а остальные светились тускло. С первой проблемой расправился пропаиванием ножки смд-транзистора, со второй - регулировкой напряжения, выдаваемого lm317.
ОНО ЖИВОЕ!

20 августа 2015 в 12:34

Самодельные электронные часы, элементная база - часть 1, измерение времени

  • DIY или Сделай сам

Наверное, каждый гик, увлекающийся самодельной электроникой, рано или поздно приходит к идее сделать свои, уникальные, часы. Идея вполне неплоха, разберемся как и на чем их лучше сделать. В качестве отправной точки будем считать, что человек умеет программировать микроконтроллеры, понимает как переслать 2 байта по i2c или serial-порту, и может спаять вместе несколько проводов. В принципе, этого достаточно.

Понятно, что ключевая функция часов - измерение времени (кто бы подумал, да?). И делать это желательно максимально точно, здесь есть несколько вариантов и подводных камней.

Итак, какие доступные в «железе» способы измерения времени мы можем использовать?

Встроенный RC-генератор процессора

Самая простая идея, которая может придти в голову - это просто настроить программный таймер, и им отсчитывать секунды. Так вот, эта идея никуда не годится. Часы-то работать конечно будут, только вот точность встроенного генератора никак не регламентируется, и может «плавать» в пределах 10% от номинала. Вряд ли кому-то нужны часы, уходящие в месяц на 15 минут.

Модуль реального времени DS1307

Более правильный вариант, он же использующийся в большинстве «народных» изделий - это часы реального времени. Микросхема обменивается с микроконтроллером по I2C, требует минимума обвязки (кварц и пара резисторов). Цена вопроса около 100р за микросхему, или около 1$ на ебее за готовую плату с микросхемой, модулем памяти и разъемом для батарейки.

Схема из даташита:

Что не менее важно, микросхема выпускается в DIP-корпусе, значит припаять ее может любой начинающий радиолюбитель. Встроенная батарейка обеспечивает работу часов, даже если питание было отключено.

Казалось бы, все хорошо, если бы не одна проблема - невысокая точность. Примерная точность часовых кварцев - 20-30ppm. Обозначение ppm - parts per million, показывает число миллионных долей. Казалось бы, 20миллионных - это супер, однако для частоты в 32768Гц получается 20*32768/1000000 = ±0,65536Гц, т.е. уже полгерца. Путем несложных подсчетов видно, что генератор с такой разницей за сутки «натикает» лишних (или недостающих) 56тыс тактов, что соответствует 2 секундам в день. Кварцы бывают разные, некоторые пользователи писали и об ошибке в 5 секунд в день. Как-то не очень точно - за месяц такие часы уйдут как минимум, на минуту. Это уже приличная разница, заметная невооруженным глазом (когда любимый сериал бабушки начинается в 11.00, а часы показывают 11.05, разработчику таких часов перед родственниками будет неудобно).

Впрочем, поскольку температура в помещении более-менее стабильна, и частота кварца не будет сильно меняться, можно добавить программную коррекцию. Другой совет, даваемый на форумах, использовать часовой кварц от старых материнских плат, по отзывам, они там довольно точные.

Модуль реального времени DS3231

Мы не первые, кто задался вопросом точности, и компания Dallas пойдя навстречу пожеланиям, выпустила более совершенный модуль - DS3231. Он называется «Extremely Accurate Real Time Clock», имеет встроенный генератор с температурной коррекцией. Точность в 10 раз выше, и составляет 2ppm. Цена вопроса чуть повыше, но корпус микросхемы рассчитан под SMD-монтаж, паять не так удобно, зато можно купить на ебее готовую плату.


(фото с сайта продавца)

Точность в 6 секунд в месяц, это уже неплохой результат. Но мы пойдем дальше - в идеале, часы в 21 веке вообще не нужно подстраивать.

Радиомодуль DCF-77

Метод скорее экзотический, но для полноты картины его нельзя не упомянуть. Немногие знают, но сигналы точного времени передаются по радио еще с 70х годов. Передатчик DCF-77 расположен в Германии недалеко от Франкфурта, и на СДВ-частоте 77.5КГц передаются метки точного времени (да, у них уже 20 лет назад были настенные и настольные часы, которые не надо подстраивать).

Способ хорош тем, что схема имеет малое энергопотребление, так что сейчас производятся даже наручные часы с такой технологией. Готовую плату приема DCF-77 можно купить на ebay, цена вопроса 20$.

Многие часы и метеостанции имеют возможность приема DCF-77, проблема лишь в том, что до России сигнал практически не доходит. Карта покрытия с Википедии:

Как можно видеть, лишь Москва и Питер находятся на границе зоны приема. По отзывам владельцев, лишь иногда сигнал удается принять, что для практического применения конечно, не годится.

GPS-модуль

Если часы будут стоять недалеко от окна, то вполне реальный метод получения точного времени - GPS-модуль. Эти модули можно недорого купить на ebay (цена вопроса 10-15$). Например, Ublox NEO-6M, подключается напрямую к serial-пинам процессора, и выдает строки NMEA на скорости 9600.

Данные приходят примерно в таком формате " $GPRMC,040302.663,A,3939.7,N,10506.6,W,0.27,358.86,200804,*1A", и распарсить их даже для слабой Arduino труда не составляет. Патриоты кстати, могут приобрести более дорогой модуль Ublox NEO-7N, поддерживающий (по отзывам) как GPS так и «Глонасс».

Очевидно, что про разные часовые пояса GPS-модуль ничего не знает, так что их вычисление и смену летнего/зимнего времени, разработчику придется продумать самому. Другой минус использования GPS - относительно высокое энергопотребление (впрочем, некоторые модули можно отдельными командами переводить в «спящий режим»).

Wi-Fi

И наконец, последний (и самый очевидный на сегодняшний момент), способ получения точного времени - это брать его из Интернета. Здесь есть два подхода. Первый, и наиболее простой - использовать в качестве платы часов что-то типа Raspberry PI с Линуксом, тогда делать ничего не надо, все будет работать «из коробки». Если же хочется «экзотики» - то самым интересным вариантом является модуль esp8266.

Это недорогой (цена вопроса около 200р на ebay) WiFi-модуль может обмениваться с сервером по serial-порту процессора, при желании его можно также перепрошить (сторонних прошивок довольно много), и часть логики (например опрос сервера времени) сделать в самом модуле. Сторонними прошивками поддерживается куча всего, от Lua до C++, так что вариантов «размять мозги» вполне достаточно.

На этом тему измерения времени наверно можно закрыть. В следующей части мы поподробнее рассмотрим процессоры, и способы вывода времени.

Предлагаю для повторения схему простых электронных часов с будильником, выполненные на типа PIC16F628A. Большим плюсом данных часов является светодиодный индикатор типа АЛС, для отображения времени. Лично мне порядком надоели всевозможные ЖКИ и хочется иметь возможность видеть время из любой точки комнаты в том числе в темноте, а не только прямо с хорошим освещением. Схема содержит минимум деталей и имеет отличную повторяемость. Часы испытаны на протяжении месяца, что показало их надежность и работоспособность. Думаю из всех схем в интернете, эта наиболее простая в сборке и запуске.

Принципиальная схема электронных часов с будильником на микроконтроллере:


Как видно из схемы часов, является единственной микросхемой, используемой в данном устройстве. Для задания тактовой частоты используется кварцевый резонатор на 4 МГц. Для отображения времени использованы индикаторы красного цвета с общим анодом, каждый индикатор состоит из двух цифр с десятичными точками. В случае использования пьезоизлучателя, конденсатор С1 - 100мкФ можно не ставить.

Можно применить любые индикаторы с общим анодом, лишь бы каждая цифра имела собственный анод. Чтоб электронные часы были хорошо видны в темноте и с большой дистанции - старайтесь выбрать АЛС-ки чем покрупнее.


Индикация в часах осуществляется динамически. В данный конкретный момент времени отображается лишь одна цифра, что позволяет значительно снизить потребление тока. Аноды каждой цифры управляются микроконтроллером PIC16F628A. Сегменты всех четырех цифр соединены вместе и через токоограничивающие резисторы R1 … R8 подключены к выводам порта МК. Поскольку засвечивание индикатора происходит очень быстро, мерцание цифр становится незаметным.


Для настройки минут, часов и будильника - используются кнопки без фиксации. В качестве выхода для сигнала будильника используется вывод 10, а в качестве усилителя - каскад на транзисторах VT1,2. Звукоизлучателем является пьезоэлемент типа ЗП. Для улучшения громкости вместо него можно поставить небольшой динамик.


Питаются часы от стабилизированного источника напряжением 5В. Можно и от батареек. В часах реализовано 9 режимов индикации. Переход по режимам осуществляется кнопками "+" и "-". Перед выводом на индикацию самих показаний, на индикаторы выводится короткая подсказка названия режима. Длительность вывода подсказки - одна секунда.


Кнопкой "Коррекция" часы - будильник переводятся в режим настроек. При этом кратковременная подсказка выводится на пол секунды, после чего корректируемое значение начинает мигать. Коррекция показаний осуществляется кнопками "+" и "-". При длительном нажатии на кнопку, включается режим автоповтора, с заданной частотой. Все значения, кроме часов, минут и секунд, записываются в EEPROM и восстанавливаются после выключения - включении питания.


Если в течение нескольких секунд ни одна из кнопок не нажата, то электронные часы переходят в режим отображения времени. Нажатием на кнопку "Вкл/Выкл" включается или выключается будильник, это действие подтверждается коротким звуком. При включенном будильнике светится точка в младшем разряде индикатора. Думал куда бы пристроить часы на кухне, и решил вмонтировать их прямо в газовую плиту:) Материал прислал in_sane.


Обсудить статью ЭЛЕКТРОННЫЕ ЧАСЫ БУДИЛЬНИК

Вспоминаю… Тридцать лет назад шесть индикаторов были маленьким сокровищем. Тот, кто мог тогда сделать с такими индикаторами часы на ТТЛ логике, считался искушенным знатоком своего дела.

Свечение газоразрядных индикаторов казалось более теплым. Через несколько минут мне стало интересно, заработают ли эти старые лампы, и захотелось что-нибудь сделать на них. Теперь-то сделать такие часы очень просто. Достаточно взять микроконтроллер…

Поскольку тогда же я увлекался программированием микроконтроллеров на языках высокого уровня, я решил немного поиграть. Я попытался сконструировать простые часы на цифровых газоразрядных индикаторах.

Цель конструирования

Я решил, что часы должны иметь шесть цифр, а время должно устанавливаться минимальным количеством кнопок. Кроме того, я хотел попытаться использовать несколько наиболее распространенных семейств микроконтроллеров разных производителей. Программу я намеревался писать на языке C.

Газоразрядным индикаторам для работы требуется высокое напряжение. Но иметь дело с опасным сетевым напряжением я не хотел. Часы должны были питаться безвредным напряжением 12 В.

Поскольку основной моей целью была игра, вы не найдете здесь описания механической конструкции и чертежей корпуса. При желании, вы сами сможете изменить часы в соответствии со своими вкусами и опытом.

Вот что у меня получилось:

  • Индикация времени: ЧЧ ММ СС
  • Индикация будильника: ЧЧ ММ --
  • Режим отображения времени: 24 часа
  • Точность ±1 секунда в день (зависит от кварцевого резонатора)
  • Напряжении питания: 12 В
  • Потребляемый ток: 100 мА

Схема часов

Для устройства с шестиразрядным цифровым дисплеем естественным решением был мультиплексный режим.

Назначение большинства элементов блок-схемы (Рисунок 1) понятно без комментариев. В определенной степени нестандартной задачей было создание преобразователя уровней ТТЛ в высоковольтные сигналы управления индикаторами. Драйверы анодов сделаны на высоковольтных NPN и PNP транзисторах. Схема позаимствована у Стефана Кнеллера (http://www.stefankneller.de).

ТТЛ микросхема 74141 содержит двоично-десятичный дешифратор и высоковольтный драйвер для каждой цифры. Возможно, заказать одну микросхему будет сложно. (Хотя я не знаю, производятся ли они вообще кем-либо сейчас). Но уж если вы нашли газоразрядные индикаторы, 74141 могут оказаться где-то рядом:-). Во времена ТТЛ логики альтернативы микросхеме 74141 практически не было. Так что попробуйте найти где-нибудь одну штуку .

Индикаторам требуется напряжение порядка 170 В. Разрабатывать специальную схему для преобразователя напряжения не имеет смысла, поскольку существует огромное количество микросхем повышающих преобразователей. Я выбрал недорогую и широко доступную микросхему MC34063. Схема преобразователя почти полностью скопирована с технического описания MC34063. К ней лишь добавлен силовой ключ T13. Внутренний ключ для такого высокого напряжения не подходит. В качестве индуктивности для преобразователя я использовал дроссель. Он показан на Рисунке 2; его диаметр 8 мм, а длина 10 мм.

КПД преобразователя вполне хороший, а выходное напряжение относительно безопасно. При токе нагрузки 5 мА выходное напряжение падает до 60 В. R32 выполняет функцию токоизмерительного резистора.

Для питания логики используется линейный регулятор U4. На схеме и на плате есть место для резервного аккумулятора. (3.6 В - NiMH или NiCd). D7 и D8 - это диоды Шоттки, а резистор R37 предназначен для ограничения зарядного тока в соответствии с характеристиками аккумулятора. Если вы собираете часы просто для развлечения, аккумулятор, D7, D8 и R37 вам не потребуются.

Окончательная схема показана на Рисунке 3.

Рисунок 3.

Кнопки установки времени подключены через диоды. Состояние кнопок проверяется установкой логической «1» на соответствующем выходе. В качестве бонусной функции к выходу микроконтроллера подключен пьезоизлучатель. Чтобы заткнуть этот противный писк, используйте маленький выключатель. Для этого вполне подошел бы и молоток, но это уж на крайний случай:-).

Перечень компонентов схемы, рисунок печатной платы и схему размещения элементов можно найти в разделе «Загрузки».

Процессор

Управлять эти несложным устройством может практически любой микроконтроллер с достаточным количеством выводов, минимально необходимое количество которых указано в Таблице 1.

Таблица 1.
Функция Выводы
Питание 2
Кварцевый резонатор 2
Управление анодами 6
Драйвер 74141 4
Вход кнопок 1
Пьезоизлучатель 1
Всего 16

Каждый изготовитель разрабатывает собственные семейства и типы микроконтроллеров. Расположение выводов индивидуально для каждого типа. Я постарался сконструировать универсальную плату для нескольких типов микроконтроллеров. На плате установлена 20-контактная панелька. С помощью нескольких проволочных перемычек вы можете адаптировать ее для разных микроконтроллеров.

Ниже перечислены микроконтроллеры, проверенные в этой схеме. Вы можете поэкспериментировать с другими типами. Преимуществом схемы является возможность использования разных процессоров. Радиолюбители, как правило, используют одно семейство микроконтроллеров и имеют соответствующий программатор и программный инструментарий. С микроконтроллерами других изготовителей могут возникнуть проблемы, поэтому я дал вам возможность выбора процессора из любимого семейства.

Вся специфика включения различных микроконтроллеров отражена в Таблицах 2…5 и на Рисунках 4…7.

Таблица 2.
Freescale
Тип MC68HC908QY1
Кварцевый резонатор 12 МГц
Конденсаторы C1, C2 22 пФ
Программа freescale.zip
(см. раздел «Загрузки»)
Установки

Примечание: Параллельно кварцевому резонатору включен резистор 10 МОм.

Таблица 3.
Microchip
Тип PIC16F628A
Кварцевый резонатор 32.768 кГц
Конденсаторы C1, C2 22 пФ
Программа pic628.zip
(см. раздел «Загрузки»)
Установки Внутр. генератор 4 МГц - I/O RA6,
MCLR OFF, WDT OFF, LVP OFF,
BROUT OFF, CP OFF, PWRUP OFF

Примечание: Микросхему необходимо развернуть в панельке на 180°.

Таблица 4.
Atmel
Тип ATtiny2313
Кварцевый резонатор 12 МГц
Конденсаторы C1, C2 15 пФ
Программа attiny.zip
(см. раздел «Загрузки»)
Установки Кв. генератор 8 МГц, RESET ON

Примечание: Добавьте SMD компоненты R и C к выводу RESET (10 кОм и 100 нФ).

Таблица 5.
Atmel
Тип AT89C2051
Кварцевый резонатор 12 MHz
Конденсаторы C1, C2 22 пФ
Программа at2051.zip
(см. раздел «Загрузки»)
Установки --

Примечание: Добавьте SMD компоненты R и C к выводу RESET (10 кОм и 100 нФ); выводы, отмеченные звездочками, соедините с шиной питания +Ub через SMD резисторы 3.3 кОм.

Сравнив коды для разных микроконтроллеров, вы увидите, что они очень похожи. Различия имеются в доступе к портам и определению функций прерываний, а также в том, что зависит от компонентов обвязки.

Исходный код состоит из двух секций. Функция main() настраивает порты и запускает таймер, формирующий сигналы прерывания. После этого программа сканирует нажатые кнопки и устанавливает соответствующие значения времени и будильника. Там же в главном цикле текущее время сравнивается с будильником и включается пьезоизлучатель.

Вторая часть является подпрограммой обработки прерываний от таймера. Подпрограмма, которая вызывается через каждую миллисекунду (в зависимости от возможностей таймера), инкрементирует переменные времени и управляет цифрами дисплея. Кроме того, проверяется состояние кнопок.

Запуск схемы

Монтаж компонентов и настройку начинайте с источника питания. Запаяйте регулятор U4 и окружавшие его компоненты. Проверьте наличие напряжения 5 В для микросхемы U2 и 4.6 В для U1. Следующим шагом соберите высоковольтный преобразователь. Подстроечным резистором R36 установите напряжение 170 В. Если диапазона подстройки окажется недостаточно, немного измените сопротивление резистора R33. Теперь установите микросхему U2, транзисторы и резисторы схемы драйверов анодов и цифр. Соедините входы U2 с шиной GND и последовательно подключайте по одному из резисторов R25 - R30 к шине питания +Ub. В соответствующих позициях должны зажигаться цифры индикаторов. На последнем этапе проверки схемы соедините с землей вывод 19 микросхемы U1 - должен запищать пьезоизлучатель.

Исходные коды и откомпилированные программы вы найдете в соответствующем ZIP файле в разделе «Загрузки». После зашивки программы в микроконтроллер тщательно проверьте каждый вывод в позиции U1 и установите необходимые перемычки из проволоки и припоя. Сверяйтесь с изображениями микроконтроллеров, приведенными выше. Если микроконтроллер запрограммирован и подключен правильно, должен заработать его генератор. Вы можете установить время и будильник. Внимание! На плате есть место для еще одной кнопки - это запасная кнопка для будущих расширений:-).

Проверьте точность частоты генератора. Если она не укладывается в ожидаемый диапазон, слегка измените номиналы конденсаторов C1 и C2. (Припаяйте параллельно конденсаторы небольшой емкости или замените их другими). Точность хода часов должна улучшиться.

Заключение

Небольшие 8-битные процессоры вполне приспособлены для языков высокого уровня. Изначально язык C не предназначался для небольших микроконтроллеров, однако для простых приложений вы прекрасно можете использовать его. Ассемблер лучше подойдет для сложных задач, требующих соблюдения критических времен или максимальной загрузки процессора. Для большинства радиолюбителей подойдут как бесплатные, так и условно-бесплатные ограниченные версии компилятора C.

Программирование на C одинаково для всех микроконтроллеров. Вы должны знать функции аппаратных средств (регистров и периферии) выбранного типа микроконтроллера. Будьте осторожны с битовыми операциями - язык C к манипуляциям с отдельными битами не приспособлен, что можно увидеть на примере исходного когда для ATtiny.

Закончили? Тогда настройтесь на созерцание вакуумных ламп и смотрите…

…возвращаются старые времена … :-)

Примечание редакции

Полным аналогом SN74141 является микросхема К155ИД1, выпускавшаяся минским ПО «Интеграл».
Микросхему без труда можно найти в сети Интернет.

Концепция часов с большими цифрами

Конструктивно девайс будет состоять из двух плат – одна над другой. Первая плата – матрица светодиодов, образующих разряды часов и минут, Вторая – силовая часть (управление светодиодами), логика и питание. Такая конструкция сделает часики более компактным (без корпуса примерно 22см х 9 см, толщиной сантиметра 4-5) + даст возможность прикрутить матрицу к другому проекту, если что то пойдет не так.

Силовая часть будет построена на базе драйвера UL2003 и транзисторных ключах. Логическая - на Atmega8 и DS1307. Питание: 220В - трансформатор; логика 5В (через 7805), силовая часть - 12В (через LM2576ADJ). Отделено будет предусмотрена кроватка для батарейки 3В для автономного питания часов реального времени - DS1307.

Думаю использовать Atmega8 и DS1307 (часики планирую подвесить под потолком, и что бы в случае пропадания электричества каждый раз не лазить за настройкой), однако разводка платы будет предполагать возможность работы девайса и без DS1307 (на первое время, а может и навсегда – уж как получится).

Таким образом, в зависимости от комплектации алгоритм работы программы часов будет следующим:

Atmega8 – счетчик времени по таймеру. Работа в цикле без пауз: опрос клавиатуры, корректировка времени (если необходимо), отображение 4 разрядов и разделителя.

Atmega8 + DS1307 . Работа в цикле без пауз: опрос клавиатуры, корректировка времени DS1307 (если необходимо), зачитка времени с DS1307, отображение 4 разрядов и разделителя. Или другой вариант – зачитка с DS1307 по таймеру, остальное в цикле (пока не знаю как лучше).

Сегмент представляет собой 4 красных светодиода, соединенных между собой последовательно. Одна цифра – 7 сегментов с общим анодом. Сегменты не планирую разделять шаблоном «восьмерки», как это сделано в обычных индикаторах.

Силовая часть часов

Силовая часть часов построена на драйвере UL2003 и транзисторных ключах VT1 и VT2.

UL2003 отвечает за управление сегментами индикатора, ключи – за управление разрядами.

Отдельно управляется разделитель часов и минут (сигнал K8).

Управление сегментами, разрядами и разделителем осуществляется от микроконтроллера подачей положительного потенциала (т.е. подачей +5В) на К1-К8, Z1-Z4.

Подача сигналов на сегменты и разряды должна осуществляться синхронно и с определенной частотой, для того, что бы обеспечить динамический вывод информации (часов и минут).

В качестве транзистора VT1 (BCP53) можно использовать транзистор BCP52.

Схема силовой части часов с большими цифрами

Печатная плата семисегментного индикатора для часов с большими цифрами

Как я говорил ранее, конструктивно часы будут состоять из двух печатных плат - плата индикатора + логика и силовая часть.

Начнем с разработки и изготовления печатной платы индикатора.

Разработка печатной платы семисегментного индикатора для часов с большими цифрами

Печатная плата семисегментного индикатора для часов с большими цифрами в формате "lay" находится конце статьи, в присоединенных файлах. О технологии изготовления печатных плат методом ЛУТ можно почитать .

Если вы сделали все правильно, готовая печатная плата будет выглядеть примерно так.

Готовая печатная плата семисегментного индикатора для часов с большими цифрами

Сборка семисегментного индикатора

Поскольку плата индикатора является двухсторонней, первое, что надо сделать это выполнить межслоевые переходы. Я делаю это с помощью ножек ненужных деталей - продеваю их в отверстия и припаиваю с двух сторон. Когда все переходы выполнены, зачищаю их плоским мелким напильником - получается очень аккуратно и симпатично.

Межслоевые переходы на плате индикатора

Следующий шаг, собственно говоря, сборка индикатора. Для чего нам понадобится пачка красных (зеленых, белых, синих) светодиодов. Я, например, брал эти.

Подготовка к сборке индикатора

При установке диодов не забываем, что мы делаем индикатор с общим анодом - т.е. "+" диодов должны быть соединены вместе. Общие аноды на печатной плате - это большие фрагменты меди. Обязательно обратите внимание на анод разделительной точки.

Расположение анодов на печатной плате индикатора

В итоге, после 2 часов кропотливой работы должно получиться вот что:

Семисегментный индикатор

Цифровая часть часов

Цифровую часть часов с большими цифрами будем собирать по схеме:

Схема часов с большими цифрами

Схема часов довольно прозрачна, поэтому объяснять как она работает не вижу смысла. Печатную плату в формате *.lay можно скачать в конце статьи. Замечу, что печатная плата в основном разработана под детали для поверхностного монтажа.

Итак, элементная база, которую использовал я:

1. Диодный мост DFA028 (подойдет любой компактный для поверхностного монтажа);
2. Регуляторы напряжения LM2576ADJ в корпусе D2PAK, 78M05 в корпусе HSOP3-P-2.30A;
3. Транзисторные ключи BCP53 (корпус SOT223) и BC847 (корпус SOT23);
4. Микроконтроллер Atmega8 (TQFP);
5. Часы реального времени DS1307 (SO8);
6. Блок питания 14В 1,2А от какого-то старого устройства;
7. Остальные детали - любого типа, подходящие по размерам для установки на печатную плату.

Разумеется, если вы хотите применить другие корпуса деталей, вам потребуется внести некоторые изменения в печатную плату.

Обратите внимание на номиналы сопротивлений R3 и R4 - они должны быть именно такими, какие указаны на схеме - не больше не меньше. Это сделано для того, что бы обеспечить на выходе регулятора напряжения LM2576ADJ ровно 12В. Если все таки не удастся найти такие номиналы резисторов, то значение сопротивления R4 может быть рассчитано по формуле:

R4=R3(12/1.23-1) или R4=8.76R3

Сборка цифровой части. Версия 1, без DS1307

Если при изготовлении печатной платы часов вы придерживались рекомендаций, изложенных в , то тогда вам излишне напоминать, что перед сборкой печатная плата должна быть просверлена, все видимые короткие замыкания на ней устранены, а плата покрыта жидкой канифолью? Тогда приступаем к сборке часов.

Я рекомендую начать со сборки блока питания и только за тем выполнить монтаж цифровой части. Это общая рекомендация по самостоятельной сборке девайсов. Почему? Просто потому, что если блок питания собран с ошибкой можно пожечь всю низковольтную электронику, которая должна питаться этим блоком питания.

Если все сделано правильно - блок питания должен заработать сразу. Проверяем сборку блока питания - замеряем напряжение в контрольных точках.

На рисунке показаны контрольные точки, в которых следует проверить напряжение питания. Если напряжение соответствует заявленному, можно приступать к сборке цифровой части часов. Иначе проверяем монтаж и работоспособность элементов блока питания.

Контрольные точки и значения напряжений для блока питания часов

После того, как проверка блока питания выполнена приступаем к сборке цифровой части часов - устанавливаем все остальные элементы на печатную плату. Проверяем на КЗ, особенно в ногах микроконтроллера Atmega и драйвера UL2003.

Монтаж цифровой части часов

Обратите внимание на то, что сборку часов мы выполняем БЕЗ установки часов реального времени DS1307, однако вся обвязка этой микросхемы должна быть выполнена. В будущем, если возникнет необходимость, это сэкономит нам время на доработку часов под вторую версию, там где все таки будут использоваться отдельные, независимые часы реального времени на DS1307.

Предварительная проверка микроконтроллера ATMEGA8

Для того, что бы проверить правильность и работоспособность микроконтроллера нам потребуется:

1. Программатор, например .
2. для внутрисхемного программирования микроконтроллера.
3. Программа AVRDUDESHELL.

Подключаем плату часов к дата-кабелю. Дата-кабель подключаем к программатору. Программатор к компьютеру, на котором установлена программа AVRDUDESHELL. Подключать плату часов к питающей сети 220В не следует.

Удачное чтение данных с микроконтроллера программой AVRDUDESHELL

Если при чтении фьюзов возникла проблемы - проверяйте монтаж - возможно где то есть короткое замыкание или "непропай". Еще один совет - возможно микроконтроллер находится в режиме низкоскоростного программирования, тогда достаточно переключить программатор в этот режим (

просмотров