Технологии SDH. Мультиплексоры SDH Состав оборудования. Конструктивное исполнение. Назначение

Технологии SDH. Мультиплексоры SDH Состав оборудования. Конструктивное исполнение. Назначение

Известно, что широко распространенная технология мультиплексирования ИКМ-30 (ИКМ - импульсно-кодовая модуляция ) использует принципы образования группового тракта, который позволяет в течение 125 мкс передать информацию 32 каналов (30 пользовательских и 2 служебных). Однако по мере роста потребностей набор типов аппаратуры расширялся, и увеличивались скорости, достигаемые при передаче по физическим каналам. Появились устройства, способные за то же время 125 мкс передавать информацию для 120 каналов (ИКМ -120), 480 (ИКМ - 480), 1920 (ИКМ-1920) и 7680 каналов (ИКМ -7680). В международных документах они имеют следующие обозначения: ИКМ-30 - E1, ИКМ -120 -E2, ИКМ - 480 -E3, ИКМ-1920- E4, ИКМ -7680-E4. Для Северной Америки и Канады принята другая иерархия : 24 канала - DS-1 , 96 каналов - DS-2 , 672 канала - DS-3 , 4032 канала - DS-4 . Для Японии принята следующая иерархия : 24 канала - DS-1 , 96т каналов - DS-2 , 480 канала - DSJ-3, 1440 каналов - DSJ-4.

Эти ряды, перечисляющие возможные иерархии цифровой аппаратуры передачи информации, называются плезиохронной цифровой иерархией ПЦИ (PDH - Plesiochronous Digital Hierarchy) .

  • секционное (регенераторное) оборудование;
  • линейное (мультиплексное) оборудование;
  • маршрутное оборудование.


Рис. 9.1.

  • STM-1 - синхронный транспортный модуль первого уровня,имеет скорость 155,52 Мбит/с. Этот модуль является основой системы SDH. Путем мультиплексирования нескольких модулей STM-1 получаются модули более высоких уровней.
  • STM- 4 - синхронный транспортный модуль четвертого уровня,имеет скорость 622,08 Мбит/с.
  • В рекомендациях ITU определен модуль STM-N - синхронный транспортный модуль уровня N, где N = 1, 4, 16, 256,с соответствующим этим коэффициентам увеличением скорости.
  • В России на радиорелейных линиях применяется STM-0 синхронный транспортный модуль нулевого уровня. Он имеет скорость 51,84 Мбит/с> и не входит в иерархию SDH.

В рамках системы SONET основная единица иерархии - синхронный транспортный сигнал STS1 (Synchronous Transport Signal) уровня 1 . Остальные синхронные транспортные сигналы более высоких уровней получаются мультиплексированием и увеличением скорости в n раз. Это число может принимать 14 значений:

Сигналы выше уровня 3 принято обозначать [ 27 ] как OC ( Optical Carrier ) - оптическая несущая иерархии SONET . При этом сигналы выше 9-го уровня считаются гипотетическими электрическими синхронными транспортными сигналами. Это название указывает на проблемы с реализацией таких сигналов в электрической форме.

Принципы мультиплексирования в иерархии SDH/SONET

Принцип передачи сигналов заключается в том, что каждые 125 мс передается стандартный синхронный модуль ( рис. 9.2), который называется " синхронный транспортный модуль " ( STM - Synchronous Transport

Module ). Рассмотрим детальнее модуль STM1 [ [ 79 ] При передаче в канал он содержит 9 временных положений [ 2 ] в каждом, из которых содержатся 270 байтов (8 битовые единицы). Таким образом, требуемая скорость равна


Рис. 9.2.

Из нескольких циклов, составляющих формат модуля STM-1 (в данном случае это цикл нижнего уровня), может быть составлен мультицикл (сверхцикл), содержащий несколько циклов нижнего уровня. Для объединения нескольких модулей используется

SHD оборудование

SDH-мультиплексор предназначен для построения волоконно-оптических сетей связи с интегрированным трафиком TDM и Ethernet. Оборудование работает по ВОЛС топологии «кольцо», «звезда», «цепь», а также по смешанным схемам. Возможность передачи совместных информационных потоков от систем PDH и Ethernet используется при создании магистральных сетей большой емкости.

Мультиплексоры SDH обеспечивают стандартизацию режимов работы сетей, их администрирование и модернизацию. Единые стандарты построения оптико-волоконных сетей позволяют объединять устройства разных производителей и оптимизировать процессы связи.

Мировые стандарты и скорость передачи данных SDH-оборудования

Преимущества использования отечественных мультиплексоров SDH

Мультиплексор SDH повышает надежность работы сетей, способствует снижению затрат на их построение и модернизацию, позволяет автоматизировать контроль за всей системой и исключить риск внезапного обрыва связи благодаря возможности переключения на резервные каналы. Существенная экономия средств на обслуживание сетей достигается за счет уменьшения общего количества оборудования.

Технология Ethernet SDH, разработанная для операторов связи, позволяет быстро и качественно транслировать данные по каналам E1. Широкие функциональные возможности оборудования, управление через веб-интерфейс, минимальное время на трансформацию и переключение на дополнительные каналы подтверждают, что за этими технологиями стоит будущее.

ООО «Русская Телефонная Компания» предлагает доступные цены на оборудование Ethernet SDH российского производства. Все модификации сертифицированы и полностью адаптированы для работы в российских сетях связи. Мы осуществляем продажу оборудования напрямую от ведущих производителей России, поэтому всегда можем скорректировать срок поставки, предложить качественный сервис и техническую поддержку.

В каталоге представлена продукция:

Специалисты ООО «Русская телефонная компания» помогут подобрать оптические мультиплексоры PDH , шкафы телекоммуникационные и все необходимое оборудование для сетей связи. Мы гарантируем индивидуальный подход и выгодные условия сотрудничества для каждого клиента.

Цифровые мультиплексоры представляют собой логические комбинированные устройства, которые предназначены для управляемой передачи информации от нескольких источников данных в единый выходной канал. По сути, такой прибор представляет собой несколько цифровых позиционных переключателей. Соответственно, можно сделать вывод, что является коммутатором входных сигналов в одну выходную линию. В этой статье будет рассматриваться отдельный тип приборов - оптические мультиплексоры SDH.

Такие приборы предназначены для работы с при помощи световых пучков, которые различаются амплитудной или фазовой а также длиной волны. Мультиплексоры SDH передают информацию по каналам Е1 и линиям Ethernet в транспортных оптоволоконных сетях. Они работают по одному или двум оптическим или многомодовым) со скоростью 155, 520 Мбит/с при длине волны 1550/1310 нм. Мультиплексоры SDH позволяют реализовать до 126 пунктов связи.

К достоинствам таких приборов можно отнести устойчивость к внешним воздействиям, техническую безопасность, защиту от взлома передаваемой информации.

SDH-мультиплексоры легко масштабируются за счет включения в основной модуль до трех дополнительных модулей передачи каналов Ethernet, потоков Е1, служебной связи, а также канала ТЧ.

Эти устройства характеризуются высокой «живучестью» сети. Реализация обладает низким значением джиттера, благодаря этому соблюдаются нормы для Е1 во время дрейфа синхронизации, а также при сбое синхронизации системы STM-1. Параметры интерфейса позволяют отследить ошибку в и выполнить переключение на запасной канал. Оптический тракт и электропитание зарезервированы по схеме 1+1. То есть при работе по одному оптоволоконному каналу, в случае повреждения кабеля, связь между абонентами сохраняется.

Мультиплексоры SDH легко совмещаются с другим оборудованием типа SDH. Они могут работать как в синхронных, так и в асинхронных режимах, допускается использование многомодового и одномодового оптоволокна. Мультиплексор SDH поддерживает функцию удаленного конфигурирования и управления по протоколу TCP/IP, 10/100 BaseT.

Такие коммутирующие устройства обычно делят на два типа: терминальные и ввода/вывода. Отличие этих типов заключается не в составе портов, а в размещении прибора в сети SDH. Терминальный мультиплексор завершает агрегатные среди них большое количество каналов вывода и ввода. Второй тип приборов транзитом передает агрегатные линии, занимая на магистрали промежуточное положение. При этом информация трибутарных каналов выводится из агрегатного потока или вводится в него.

Большинство производителей выпускают универсальные мультиплексоры типа SDH, которые используются в качестве ввода/вывода, терминальных, а также кросс-коннекторов - в зависимости от установленных в них модулей с трибутарными и агрегатными портами.

В заключение добавим, что оптоволоконные мультиплексоры набирают все большую популярность в связи с интенсивным развитием этого вида связи. Будущее за оптоволоконными технологиями.

Опишем основные элементы системы передачи данных на основе SDH, или функциональные модули SDH. Эти модули могут быть связаны между собой в сеть SDH. Логика работы или взаимодействия модулей в сети определяет необходимые функциональные связи модулей - топологию, или архитектуру сети SDH.

Сеть SDH, как и любая сеть, строиться из отдельных функциональных модулей ограниченного набора: мультиплексоров, коммутаторов, концентраторов, регенераторов и терминального оборудования. Этот набор определяеться основными функциональными задачами, решаемыми сетью:

    сбор входных потоков через каналы доступа в агрегатный блок, пригодный для транспортировки в сети SDH - задача мультиплексирования, решаемая терминальными мультиплексорами - ТМ сети доступа;

    транспортировка агрегатных блоков по сети с возможностью ввода/вывода входных/выходных потоков - задача транспортирования, решаемая мультиплексорами ввода/вывода - ADM, логически управляющими информационным потоком в сети, а физически - потоком в физической среде, формирующей в этой сети транспортный канал;

    перегрузка виртуальных контейнеров в соответствии со схемой маршрутизации из одного семента сети в другой, осуществляемая в выделенных узлах сети, - задача коммутации, или кросс-коммутации, решаемая с помощью цифровых коммутаторов или кросс-коммутаторов - DXC;

    объединение нескольких однотипных потоков в распределительный узел - концентратор (или хаб) - задача концентрации, решаемая концентраторами;

    восстановление (регенерация) формы и амплитуды сигнала, передаваемого на большие растояния, для компенсации его затухания - задача регенерации, решаемая с помощью регенераторов;

    сопряжение сети пользователя с сетью SDH - задача сопряжения, решаемая с помощью оконечного оборудования - различных согласующих, устройств, например, конверторов интерфейсов, конверторов скоростей, конверторов импедансов и т.д.

2. Функциональные модули сетей sdh

Мультиплексор.

Основным функциональным модулем сетей SDH является мультиплексор. Мультиплексоры SDH выполняют как функции собственно мультиплексора, так и функции устройств терминального доступа, позволяя подключать низкоскоростные каналы PDH иерархии непосредственно к своим входным портам. они являются универсальными и гибкими устройствами, позволяющие решать практически все перечисленные выше задачи, т.е. кроме задачи мультиплексирования выполнять задачи коммутации, концентрации и регенерации. Это оказываеться возможным в силу модульной конструкции SDH мультиплексора - SMUX, при которой выполняемые функции определяются лишь возможностями системы управления и составом модулей, включённых в спецификацию мультиплексора. Принято, однако, выделять два основных типа SDH мультиплексора: терминальный мультиплексор и мультиплексор ввода/вывода.

Терминальный мультиплексор TM является мультиплексором и оконечным устройством SDH сети с каналами доступа, соответствующим трибам доступа PDH и SDH иерархии (рис. 6). Терминальный мультиплексор может либо вводить каналы, т.е. коммутировать их со входа трибного интерфейса на линейный выход, или выводить каналы, т.е. коммутировать с линейного входа на выход трибного интерфейса.

Мультиплексор ввода/вывода ADM может иметь на входе тот же набор трибов, что и терминальный мультиплексор (рис. 6). Он позволяет вводить/выводить соответствующие им каналы. Дополнительно к возможностям коммутации, обеспечиваемым ТМ, ADM позволяет осуществлять сквозную коммутацию выходных потоков в обоих направлениях, а также осуществлять замыкание канала приёма на канал предачи еа обоих сторонах ("восточный" и "западный") в случае выхода из строя одного из направлений. Наконец, он позволяет (в случае аварийного выхода из строя мультиплексора) пропускать основной оптический поток мимо него в обходном режиме. Всё это даёт возможность использовать ADM в топологиях типа кольца.

Рисунок 5.1 - Синхронный мультиплексор (SMUX): терминальный мультиплексор ТМ или мультиплексор ввода/вывода ADM.

Регенератор представляет собой вырожденный случай мультиплексора, имеющего один входной канал - как правило, оптический триб STM-N и один или два агрегатных выхода (рис. 7). Он используется для увеличения допустимого растояния между узлами сети SDH путём регенерации сигналов полезной нагрузки. Обычно это растояние составляет 15 - 40 км. для длины волны порядка 1300 нм или 40 - 80 км. - для 1500 нм.

Рисунок 5.2 - Мультиплексор в режиме регенератора

Концентраторы

Концентратор (хаб) используется в топологических схемах типа "звезда", представляет собой мультиплексор, объединяющий несколько, как правило однотипных (со стороны входных портов) потоков, поступающих от удаленных узлов сети в один распределительный узел сети SDH, не обязательно также удаленный, но связанный с основной транспортной сетью.

Этот узел может также иметь не два, а три, четыре или больше линейных портов типа STM-N или STM-N-1 (рис. 5.3) и позволяет организовать ответвление от основного потока или кольца (рис. 5.3а), или, наоборот, подключение двух внешних ветвей к основному потоку или кольцу (рис.5.3) или, наконец, подключение нескольких узлов ячеистой сети к кольцу SDH (рис. 5.3в). В общем случае он позволяет уменьшить общее число каналов, подключенных непосредственно к основной транспортной сети SDH. Мультиплексор распределительного узла в порте ответвления позволяет локально коммутировать подключенные к нему каналы, давая возможность удаленным узлам обмениваться через него между собой, не загружая трафик основной транспортной сети.

Рисунок 5.3 – Синхронный мультиплексор в режиме концентратора

Коммутатор .Физически возможности внутренней коммутации каналов заложены в самом мультиплексоре SDH, что позволяет говорить о мультиплексоре как о внутреннем или локальном коммутаторе. На рис. 8, например, менеджер полезной нагрузки может динамически изменять логическое соответствие между трибным блоком TU и каналом доступа, что равносильно внутренней коммутации каналов. Кроме этого, мультиплексор, как правило, имеет возиожность коммутировать собственные каналы доступа, (рис. 9), что равносильно локальной коммутации каналов. На мультиплексоры, например, можно возложить задачи локальной коммутации на уровне однотипных каналов доступа, т.е. задачи, решаемые концентраторами (рис. 9).

В общем случае приходиться использовать специально разработанные синхронные коммутаторы - SDXC, осуществляющие не только локальную, но и общую или проходную (сквозную) коммутацию высокоскоростных потоков и синхронных транспортных модулей STM-N (рис.3.5). Важной особенностью таких коммутаторов является отсутствие блокировки других каналов при коммутации, когда коммутация одних групп TU не накладываетограничений на процесс обработки других групп TU. такая коммутация называется неблокирующей.

Рисунок 8 - Мультиплексор ввода/вывода в режиме внутреннего коммутатора.

Рисунок 9 - Мультиплексор ввода/вывода в режиме локального коммутатора.

Рисунок 10 - Общий или проходной коммутатор высокоскоростных каналов

Можно выделить шесть различных функций, выполняемых коммутатором:

Маршрутизация (routing) виртуальных контейнеров VC, проводимая на основе использования информации в маршрутном заголовке ROH соответствующего контейнера;

Консолидация или объединение (consolidation/hubbing) виртуальных контейнеров VC, проводимая в режиме концентратора/хаба;

Трансляция (translation) потока от точки к нескольким точкам, или к мультиточке, осуществляемая при использовании режима связи "точка - мультиточка";

Сортировка или перегрупировка (drooming) виртуальных контейнеров VC, осуществляемая с целью создания несколких упорядоченных потоков VC из общего потока VC, поступающего на коммутатор;

Доступ к виртуальному контейнеру VC, осуществляемый при тестировании оборудования;

Ввод/вывод (drop/insert) виртуальных контейнеров, осуществляемый при работе мультиплексора ввода/вывода;

SDH изначально создавалась для передачи большого числа относительно низкоскоростных цифровых каналов (Е1, Е2, ЕЗ). Однако в новых поколениях SDH реализованы методы (сцепка виртуальных контейнеров), позволяющие передавать и высокоскоростные потоки любого трафика (ATM, IP) на скоростях вплоть до 10 Гбит/с. За счет этого TDM-трафик телефонных сетей и трафик данных передаются интегрировано и оборудование SDH приобрело мультисервисные свойства. Немаловажное значение имеет высокая отказоустойчивость и малое время восстановления работоспособности SDH-сетей.

Технология получила массовое распространение - на сегодняшний день в мире построено более 150 тыс. сетей SDH и около 150 тыс. сетей SONET в США. Таким образом, SDH можно считать доминирующей технологией в магистральных сетях и сетях масштаба города (Metropolitan Access Network - MAN). Дополнительным достоинством SDH является существенное снижение стоимости решений, которое произошло в результате наращивания объемов производства этого оборудования.

1. Цифровая первичная сеть - принципы построения и тенденции развития

Первичной сетью называется совокупность типовых физических цепей, типовых каналов передачи и сетевых трактов системы электросвязи, образованная на базе сетевых узлов, сетевых станций, оконечных устройств первичной сети и соединяющих их линий передачи системы электросвязи. В основе современной системы электросвязи лежит использование цифровой первичной сети, основанной на использовании цифровых систем передачи. Как следует из определения, в состав первичной сети входит среда передачи сигналов и аппаратура систем передачи. Современная первичная сеть строится на основе технологии цифровой передачи и использует в качестве сред передачи электрический и оптический кабели и радиоэфир.

Рассмотрим ту часть первичной, которая связана с передачей информации в цифровом виде. Как видно из рис. 1.1, современная цифровая первичная сеть может строиться на основе трех технологий: PDH, SDH и ATM.

Рис. 1.1. Место цифровой первичной сети в системе электросвязи

Первичная цифровая сеть на основе PDH/SDH состоит из узлов мультиплексирования (мультиплексоров), выполняющих роль преобразователей между каналами различных уровней иерархии стандартной пропускной способности (ниже), регенераторов, восстанавливающих цифровой поток на протяженных трактах, и цифровых кроссов, которые осуществляют коммутацию на уровне каналов и трактов первичной сети. Схематично структура первичной сети представлена на рис. 1.2. Как видно из рисунка, первичная сеть строится на основе типовых каналов, образованных системами передачи. Современные системы передачи используют в качестве среды передачи сигналов электрический и оптический кабель, а также радиочастотные средства (радиорелейные и спутниковые системы передачи). Цифровой сигнал типового канала имеет определенную логическую структуру, включающую цикловую структуру сигнала и тип линейного кода. Цикловая структура сигнала используется для синхронизации, процессов мультиплексирования и демультиплексирования между различными уровнями иерархии каналов первичной сети, а также для контроля блоковых ошибок. Линейный код обеспечивает помехоустойчивость передачи цифрового сигнала. Аппаратура передачи осуществляет преобразование цифрового сигнала с цикловой структурой в модулированный электрический сигнал, передаваемый затем по среде передачи. Тип модуляции зависит от используемой аппаратуры и среды передачи.

Рис. 1.2. Структура первичной сети.

Таким образом, внутри цифровых систем передачи осуществляется передача электрических сигналов различной структуры, на выходе цифровых систем передачи образуются каналы цифровой первичной сети, соответствующие стандартам по скорости передачи, цикловой структуре и типу линейного кода.

Обычно каналы первичной сети приходят на узлы связи и оканчиваются в линейно-аппаратном цехе (ЛАЦе), откуда кроссируются для использования во вторичных сетях. Можно сказать, что первичная сеть представляет собой банк каналов, которые затем используются вторичными сетями (сетью телефонной связи, сетями передачи данных, сетями специального назначения и т.д.). Существенно, что для всех вторичных сетей этот банк каналов един, откуда и вытекает обязательное требование, чтобы каналы первичной сети соответствовали стандартам.

Cовременная цифровая первичная сеть строится на основе трех основных технологий: плезиохронной иерархии (PDH), синхронной иерархии (SDH) и асинхронного режима переноса (передачи) (ATM). Из перечисленных технологий только первые две в настоящее время могут рассматриваться как основа построения цифровой первичной сети.

Технология ATM как технология построения первичной сети является пока молодой и до конца не опробованной. Эта технология отличается от технологий PDH и SDH тем, что охватывает не только уровень первичной сети, но и технологию вторичных сетей (рис. 1.1), в частности, сетей передачи данных и широкополосной ISDN (B-ISDN). В результате при рассмотрении технологии ATM трудно отделить ее часть, относящуюся к технологии первичной сети, от части, тесно связанной со вторичными сетями.

Рассмотрим более подробно историю построения и отличия плезиохронной и синхронной цифровых иерархий. Схемы ПЦС были разработаны в начале 80х. Всего их было три: 1) принята в США и Канаде, в качестве скорости сигнала первичного цифрового канала ПЦК (DS1) была выбрана скорость 1544 кбит/с и давала последовательность DS1 - DS2 - DS3 - DS4 или последовательность вида: 1544 - 6312 - 44736 - 274176 кбит/с. Это позволяло передавать соответственно 24, 96, 672 и 4032 канала DS0 (ОЦК 64 кбит/с); 2) принята в Японии, использовалась та же скорость для DS1; давала последовательность DS1 - DS2 - DSJ3 - DSJ4 или последовательность 1544 - 6312 - 32064 - 97728 кбит/с, что пзволяло передавать 24, 96, 480 или 1440 каналов DS0; 3) принята в Европе и Южной Америке, в качестве превичной была выбрана скорость 2048 кбит/с и давала последовательность E1 - E2 - E3 - E4 - E5 или 2048 - 8448 - 34368 - 139264 - 564992 кбит/с. Указанная иерархия позволяла передавать 30, 120, 480, 1920 или 7680 каналов DS0.

Комитетом по стандартизации ITU - T был разработан стандарт, согласно которому: -- во-первых, были стандартизированы три первых уровня первой иерархии, четыре уровня второй и четыре уровня третьей иерархии в качестве основных, а также схемы кросс-мультиплексирования иерархий; -- во-вторых,последние уровни первой и третьей иерархий не были рекомендованы в качестве стандартных.

Указанные иерархии, известные под общим названием плезиохронная цифровая иерархия PDH, или ПЦИ, сведены в таблицу 1.1.

Таблица 1.1.Три схемы ПЦС: АС-американская; ЯС-японская; ЕС-европейская.

Но PDH обладала рядом недостатков, а именно: -- затруднённый ввод/вывод цифровых потоков в промежуточных пунктах; -- отсутствие средств сетевого автоматического контроля и управления; -- многоступенчатое востановление синхронизма требует достаточно большого времени; Также можно считать недостатком наличие трёх различных иерархий.

Указанные недостатки PDH, а также ряд других факторов привели к разработке в США ещё одной иерархии - иерархии синхронной оптической сети SONET, а в Европе аналогичной синхронной цифровой иерархии SDH, предложенными для использования на волоконно-оптических линиях связи(ВОЛС).Но из-за неудачно выбранной скорости предачи для STS-1 , было принято решение -- отказаться от создания SONET, а создать на её основе SONET/SDH со скоростью передачи 51.84 Мбит/с первого уровня ОС1 этой СЦИ. Врезультате OC3 SONET/SDH соответствовал STM-1 иерархии SDH.Скорости передач иерархии SDH представлены в таблице 1.2.

Таблица 1.2.Скорости передач иерархии SDH.

Иерархии PDH и SDH взаимодействуют через процедуры мультиплексирования и демультиплексирования потоков PDH в системы SDH.

Основным отличием системы SDH от системы PDH является переход на новый принцип мультиплексирования. Система PDH использует принцип плезиохронного (или почти синхронного) мультиплексирования, согласно которому для мультиплексирования, например, четырех потоков Е1 (2048 кбит/с) в один поток Е2 (8448 кбит/с) производится процедура выравнивания тактовых частот приходящих сигналов методом стаффинга. В результате при демультиплексировании необходимо производить пошаговый процесс восстановления исходных каналов. Например, во вторичных сетях цифровой телефонии наиболее распространено использование потока Е1. При передаче этого потока по сети PDH в тракте ЕЗ необходимо сначала провести пошаговое мультиплексирование Е1-Е2-ЕЗ, а затем - пошаговое демультиплексирование ЕЗ-Е2-Е1 в каждом пункте выделения канала Е1.

В системе SDH производится синхронное мультиплексирование/демультиплексирование, которое позволяет организовывать непосредственный доступ к каналам PDH, которые передаются в сети SDH. Это довольно важное и простое нововведение в технологии привело к тому, что в целом технология мультиплексирования в сети SDH намного сложнее, чем технология в сети PDH, усилились требования по синхронизации и параметрам качества среды передачи и системы передачи, а также увеличилось количество параметров, существенных для работы сети. Как следствие, методы эксплуатации и технология измерений SDH намного сложнее аналогичных для PDH.

Международным союзом электросвязи ITU-T предусмотрен ряд рекомендаций, стандартизирующих скорости передачи и интерфейсы систем PDH, SDH и ATM, процедуры мультиплексирования и демультиплексирования, структуру цифровых линий связи и нормы на параметры джиттера и вандера (рис- 1.3).

Рис. 1.3. Стандарты первичной цифровой сети, построенной на основе технологий PDH, SDH и ATM.

Рассмотрим основные тенденции в развитии цифровой первичной сети.В настоящий момент очевидной тенденцией в развитии технологии мультиплексирования на первичной сети связи является переход от PDH к SDH. Если в области средств связи этот переход не столь явный (в случае малого трафика по-прежнему используются системы PDH), то в области эксплуатации тенденция к ориентации на технологию SDH более явная. Операторы, создающие большие сети, уже сейчас ориентированы на использование технологии SDH.Следует также отметить, что SDH дает возможность прямого доступа к каналу 2048 кбит/с за счет процедуры ввода/вывода потока Е1 из трактов всех уровней иерархии SDH. Канал Е1 (2048 кбит/с) является основным каналом, используемым в сетях цифровой телефонии, ISDN и других вторичных сетях.

2. Технология SDH

Особенности технологии SDH: предусматривает синхронную передачу и мультиплексирование. Элементы первичной сети SDH используют для синхронизации один задающий генератор, как следствие, вопросы построения систем синхронизации становятся особенно важными;

Предусматривает прямое мультиплексирование и демультиплексирование потоков PDH, так что на любом уровне иерархии SDH можно выделять загруженный поток PDH без процедуры пошагового демультиплексирования. Процедура прямого мультиплексирования называется также процедурой ввода-вывода;

Опирается на стандартные оптические и электрические интерфейсы, что обеспечивает лучшую совместимость оборудования различных фирм-производителей;

Позволяет объединить системы PDH европейской и американской иерархии, обеспечивает полную совместимость с существующими системами PDH и, в то же время, дает возможность будущего развития систем передачи, поскольку обеспечивает каналы высокой пропускной способности для передачи ATM, MAN и т.д.;

Обеспечивает лучшее управление и самодиагностику первичной сети. Большое количество сигналов о неисправностях, передаваемых по сети SDH, дает возможность построения систем управления на основе платформы TMN.Технология SDH обеспечивает возможность управления сколь угодно разветвленной первичной сетью из одного центра.

Выделим общие особенности построения синхронной иерерхии:

Поддержка в качестве входных сигналов каналов доступа только трибов(прим. от trib, tributary - компонентный сигнал, подчинённый сигнал или нагрузка, поток нагрузке) PDH и SDH;

Трибы должны быть упакованы в стандартные помеченные контейнеры, размеры которых определяются уровнем триба в иерархии PDH;

Положение виртуального контейнера может определяться с помощью указателей, позволяющих устранить противоречие между фактом синхронности обработки и возможным изменением положения контейнера внутри поля полезной нагрузки;

Несколько контейнеров одного уровня могут быть сцепленывместе и рассматриваться как один непрерывный контейнер, используемый для размещения нестандартной полезной нагрузки;

Предусмотрено формирование отдельного поля заголовков размером 81 байт.

Иерархия SDH включает в себя несколько уровней STM. В качестве примера использования уровней в сети SDH на рис.2.1 показана первичная сеть SDH, включающая кольца магистральной сети, построенной на потоках STM-16, региональных сетей, построенных на потоках STM-4,и локальных сетей с потоками STM-1.

Рис.2.1. Пример первичной сети, построенной на технологии SDH

В процессе внедрения технологии SDH на первом этапе вероятно появление комбинированных сетей SDH/PDH. Технология SDH внедряется обычно в виде "островов", объединенных каналами существующей первичной сети (рис. 2.2). На втором этапе "острова" объединяются в первичную сеть на основе SDH. В результате на современном этапе необходимо не только рассматривать технологию SDH, но и ориентироваться на изучение комбинированных сетей и процессов взаимодействия SDH и PDH.

Рис.2.2.Пример комбинированной первичной сети PDH/SDH

3. Состав сети SDH. Топология и архитектура

Состав сети SDH.

Сеть SDH, как и любая сеть, строиться из отдельных функциональных модулей ограниченного набора: мультиплексоров, коммутаторов, концентраторов, регенераторов и терминального оборудования. Этот набор определяеться основными функциональными задачами, решаемыми сетью:

Сбор входных потоков через каналы доступа в агрегатный блок, пригодный для транспортировки в сети SDH - задача мультиплексирования, решаемая терминальными мультиплексорами - ТМ сети доступа;

Транспортировка агрегатных блоков по сети с возможностью ввода/вывода входных/выходных потоков - задача транспортирования, решаемая мультиплексорами ввода/вывода - ADM, логически управляющими информационным потоком в сети, а физически - потоком в физической среде, формирующей в этой сети транспортный канал;

Перегрузка виртуальных контейнеров в соответствии со схемой маршрутизации из одного семента сети в другой, осуществляемая в выделенных узлах сети, - задача коммутации, или кросс-коммутации, решаемая с помощью цифровых коммутаторов или кросс-коммутаторов - DXC;

Объединение нескольких однотипных потоков в распределительный узел - концентратор (или хаб) - задача концентрации, решаемая концентраторами;

Восстановление (регенерация) формы и амплитуды сигнала, передаваемого на большие растояния, для компенсации его затухания - задача регенерации, решаемая с помощью регенераторов - устройств, аналогичных повторителям в LAN;

Сопряжение сети пользователя с сетью SDH - задача сопряжения, решаемая с помощью оконечного оборудования - различных согласующих, устройств, например, конверторов интерфейсов, конверторов скоростей, конверторов импедансов и т.д.

Мультиплексор. Основным функциональным модулем сетей SDH является мультиплексор.

Мультиплексоры SDH выполняют как функции собственно мультиплексора, так и функции устройств терминального доступа, позволяя подключать низкоскоростные каналы PDH иерархии непосредственно к своим входным портам. они являются универсальными и гибкими устройствами, позволяющие решать практически все перечисленные выше задачи, т.е. кроме задачи мультиплексирования выполнять задачи коммутации, концентрации и регенерации. Это оказываеться возможным в силу модульной конструкции SDH мультиплексора - SMUX, при которой выполняемые функции определяются лишь возможностями системы управления и составом модулей, включённых в спецификацию мультиплексора. Принято, однако, выделять два основных типа SDH мультиплексора: терминальный мультиплексор и мультиплексор ввода/вывода. Терминальный мультиплексор TM является мультиплексором и оконечным устройством SDH сети с каналами доступа, соответствующим трибам доступа PDH и SDH иерархии (рис.3.1.). Терминальный мультиплексор может либо вводить каналы, т.е. коммутировать их со входа трибного интерфейса на линейный выход, или выводить каналы, т.е. коммутировать с линейного входа на выход трибного интерфейса. Мультиплексор ввода/вывода ADM может иметь на входе тот же набор трибов, что и терминальный мультиплексор (рис.3.1.). Он позволяет вводить/выводить соответствующие им каналы. Дополнительно к возможностям коммутации, обеспечиваемым ТМ, ADM позволяет осуществлять сквозную коммутацию выходных потоков в обоих направлениях, а также осуществлять замыкание канала приёма на канал предачи еа обоих сторонах ("восточный" и "западный") в случае выхода из строя одного из направлений. Наконец, он позволяет (в случае аварийного выхода из строя мультиплексора) пропускать основной оптический поток мимо него в обходном режиме. Всё это даёт возможность использовать ADM в топологиях типа кольца.

Рис. 3.1.Синхронный мультиплексор (SMUX):

терминальный мультиплексор ТМ или мультиплексор ввода/вывода ADM.

Регенератор представляет собой вырожденный случай мультиплексора, имеющего один входной канал - как правило, оптический триб STM-N и один или два агрегатных выхода (рис.3.2.). Он используется для увеличения допустимого растояния между узлами сети SDH путём регенерации сигналов полезной нагрузки. Обычно это растояние составляет 15 - 40 км. для длины волны порядка 1300 нм или 40 - 80 км. - для 1500 нм.

Рис. 3.2.Мультиплексор в режиме регенератора.

Коммутатор. Физически возможности внутренней коммутации каналов заложены в самом мультиплексоре SDH, что позволяет говорить о мультиплексоре как о внутреннем или локальном коммутаторе. На рис.3.3., например, менеджер полезной нагрузки может динамически изменять логическое соответствие между трибным блоком TU и каналом доступа, что равносильно внутренней коммутации каналов. Кроме этого, мультиплексор, как правило, имеет возиожность коммутировать собственные каналы доступа, (рис.3.4.), что равносильно локальной коммутации каналов. На мультиплексоры, например, можно возложить задачи локальной коммутации на уровне однотипных каналов доступа, т.е. задачи, решаемые концентраторами (рис.3.4.). В общем случае приходиться использовать специально разработанные синхронные коммутаторы - SDXC, осуществляющие не только локальную, но и общую или проходную (сквозную) коммутацию высокоскоростных потоков и синхронных транспортных модулей STM-N (рис.3.5). Важной особенностью таких коммутаторов является отсутствие блокировки других каналов при коммутации, когда коммутация одних групп TU не накладываетограничений на процесс обработки других групп TU. такая коммутация называется неблокирующей.

Рис. 3.3.Мультиплексор ввода/вывода в режиме внутреннего коммутатора.

Рис. 3.4.Мультиплексор ввода/вывода в режиме локального коммутатора.

Рис. 3.5.Общий или проходной коммутатор высокоскоростных каналов.

Можно выделить шесть различных функций, выполняемых коммутатором:

Маршрутизация (routing) виртуальных контейнеров VC, проводимая на основе использования информации в маршрутном заголовке ROH соответствующего контейнера;

Консолидация или объединение (consolidation/hubbing) виртуальных контейнеров VC, проводимая в режиме концентратора/хаба;

Трансляция (translation) потока от точки к нескольким точкам, или к мультиточке, осуществляемая при использовании режима связи "точка - мультиточка";

Сортировка или перегрупировка (drooming) виртуальных контейнеров VC, осуществляемая с целью создания несколких упорядоченных потоков VC из общего потока VC, поступающего на коммутатор;

Доступ к виртуальному контейнеру VC, осуществляемый при тестировании оборудования;

Ввод/вывод (drop/insert) виртуальных контейнеров, осуществляемый при работе мультиплексора ввода/вывода;

Топология сети SDH.

Топология "точка-точка".

Сегмент сети, связывающий два узла A и B, или топология "точка - точка", является наиболее простым примером базовой топологии SDH сети (рис.3.6.). Она может быть реализована с помощью терминальных мультиплексоров ТМ, как по схеме без резирвирования канала приёма/передачи, так и по схеме со стопроцентным резервированием типа 1+1, использующей основной и резервный электрические или оптические агрегатные выходы (каналы приёма/передачи).

Рис. 3.6.Топология "точка-точка", реализованная с использованием ТМ.

Топология "последовательная линейная цепь".

Эта базовая топология используеться тогда, когда интенсивность трафика в сети не так велика и существует необходимость ответвлений в ряде точек линии, где могут вводиться каналы доступа. Она может быть представлена либо в виде простой последовательной линейной цепи без резервирования, как на рис.3.7., либо более сложной цепью с резервированием типа 1+1. Последний вариант топологии часто называют "упрощённым кольцом".

Рис. 3.7.Топология "последовательная линейная цепь", реализованная на ТМ и TDM.

Топология "звезда", реализующая функцию концентратора.

В этой топологии один из удалённых узлов сети, связанный с центром коммутации или узлом сети SDH на центральном кольце, играет роль концентратора, или хаба, где часть трафика может быть выведена на терминалы пользователя, тогда как оставшаяся его часть может быть распределена по другим удалённым узлам (рис.3.9.)

Рис. 3.9.Топология "звезда" c мультиплексором в качестве концентратора.

Топология "кольцо".

Эта топология (рис.3.10.) широко используется для построения SDH сетей первых двух уровней SDH иерархии (155 и 622 Мбит/с). Основное приемущество этой топологии - лёгкость организации защиты типа 1+1, благодаря наличию в синхронных мультиплексорах SMUX двух пар оптических каналов приёма/передачи: восток - запад, дающих возможность формирования двойного кольца со встречными потоками.

Рис. 3.10.Топология "кольцо" c защитой 1+1.

Линейная архитектура для сетей большой протяженности.

Для линейных сетей большой протяженности растояние между терминальными мультиплексорами больше или много больше того растояния, которое может быть рекомендованно с точки зрения максимально допустимого затухания волоконно-оптического кабеля. В этом случае на маршруте между ТМ (рис.3.14) должны быть установленны кроме мультиплексоров и проходного коммутатора ещё и регенераторы для востановления затухающего оптического сигнала. Эту линеёную архитектуру можно представить в виде последовательного соединения ряда секций, специфицированных в рекомендациях ITU-T G.957 и ITU-T G.958.

Рис. 3.14.Сеть SDH большой протяженности со связью типа "точка-точка" и её сегментация.

В процессе развития сети SDH разработчики могут использовать ряд решений, характерных, для глобальных сетей, таких как формирование своего "остова" (backbone) или магистральной сети в виде ячеистой (mush) структуры, позволяющей организовать альтернативные (резервные) маршруты, используемые в случае возникновения проблем при маршрутизации виртуальных контейнеров по основному пути. Это наряду с присущими сетям SDH внутренним резирвированием, позволяет повысить надёжность всей сети в целом. Причём при таком резервировании на альтернативных маршрутах могут быть использовнны альтернативные среды распространения сигнала.

Методы контроля чётности и определения ошибок в системе SDH

В системе SDH используется метод контроля параметров ошибки без отключения канала, который получил название метода контроля четности (Bit Interleaved Parity - В1Р). Этот метод, также как и CRC, является оценочным, но он дает хорошие результаты при анализе систем передачи SDH. Алгоритм контроля четности достаточно прост (рис.5.1). Контроль четности выполняется для конкретного блока данных цикла в пределах групп данных по 2, 8 и 24 бита (BIP-2, BIP-8 и В1Р-24 соответственно). Эти группы данных организуются в столбцы, затем для каждого столбца рассчитывается его четность, т.е. четное или нечетное количество единиц в столбце. Результат подсчета передается в виде кодового слова на приемную сторону. На приемной стороне делается аналогичный расчет, сравнивается с результатом и делается вывод о количестве ошибок четности. Результат сравнения передается в направлении, обратном передаче потока.

Рис.5.1.Алгоритм контроля чётности.

Метод контроля четности является оценочным, поскольку несколько ошибок могут компенс ровать друг друга в смысле контроля четности, однако этот метод дает приемлемый уровень оценки качества цифровой системы передачи. Поскольку технология SDH предусматривает создание секционных заголовков и заголовк пути, метод контроля четности дает возможность тестирования параметров цифровой системы передачи от секции к секции и от начала до конца маршрута. Для этого используются специальные байты (см. выше) в составе заголовков SОН и РОН. Например, количество ошибок, обнаруженно в канале В3 передается в байте G1 РОН VC-4 следующего цикла. На рис.5.2 представлена cxема посекционного мониторинга параметра ошибки BIP. Используемые для контроля четности байты связанные с ними участки цифровой системы передачи приведены в табл.5.1.

Литература

И.Г.Бакланов "Технологии измерений первичной сети. Часть 1. Системы Е1,PDH, SDH."; ЭКО-ТРЕНДЗ, 2000

просмотров