Опреснение морской воды, очистка, водоочистка. Опреснение воды Химическое опреснение морской воды

Опреснение морской воды, очистка, водоочистка. Опреснение воды Химическое опреснение морской воды

Опреснитель, - это аппарат для удаления из воды растворенных солей.

С помощью опреснителя в результате конечной обработки получается сверхчистая вода, не содержащая минеральных солей, которая может использоваться как для бытовых целей, так и в качестве питьевой воды.

Вода, в том числе и пресная, не является абсолютно чистой: она содержит различные примеси. От количества и свойств, растворенных в воде веществ, зависит пригодность ее применения на судне.

В зависимости от назначения различают следующие виды пресной воды, применяемые на судне:

  • питьевую - для питья и приготовления пищи;
  • мытьевую - для умывальников, душевых, прачечных;
  • питательную - для питания парогенераторов;
  • дистиллированную - для аккумуляторных батарей;
  • техническую - для охлаждения судовых двигателей;
  • технологическую - для обработки рыбы.

Для каждого из перечисленных видов воды предусматриваются свои емкости и системы.
Допускается устройство единой системы питьевой и мытьевой воды при условии, что качество и условия ее хранения будут удовлетворять требованиям, предъявляемым к питьевой воде.

Типы опреснителей.

Существующие разнообразные способы опреснения забортной морской воды можно разделить на две основные группы:

  1. Дистилляционное опреснение, связанное с промежуточным переходом жидкого агрегатного состояния, в твердое или газообразное (паровое или испарительное);
  2. Фильтрационное опреснение (обратный ОСМОС) без изменения агрегатного состояния жидкости (воды).

Дистилляционные опреснители выпаривают морскую воду, улавливают получившийся пар и затем, после его охлаждения, получают воду.

Дистилляционная опреснительная установка состоит из следующих основных частей:

  • Теплообменных аппаратов: испарителя, конденсатора, водонагревателя.
  • Насосов: питательного, циркуляционного, дистиллятного, рассольного.
  • Трубопроводов: теплоносителя, забортной воды, пресной воды, рассола.
  • Контрольно-измерительных, сигнальных и автоматических приборов.

Опреснители фильтрационного типа работают по-другому. В работе используют принцип обратного ОСМОСа. Под ОСМОСом понимают процесс «выравнивания» концентрации растворенных элементов в растворах (например, солей в сосудах, разделенных полупроницаемой мембраной). Обратный ОСМОСтребует приложения к соленой воде очень высокого давления, которое буквально «выдавливает» ионы соли через мембрану. Проще говоря, опреснение состоит в том, что солевой раствор оказывается под давлением со стороны мембраны, проницаемой для воды и непроницаемой для соли.

В результате фильтрации способом обратного ОСМОСа 97% содержащихся в морской воде солей и минералов отфильтровываются, а оставшиеся 3% дают на выходе чистую питьевую воду, согласно всех санитарных требований.

Преимущества и недостатки опреснителей дистилляционного и фильтрационного типов.

Преимущества дистилляционного типа опреснителей:

  • возможность достижения высокого качества опресненной воды.
  • возможность использования в системах водоподготовки на тепловых и атомных электростанциях, а также котельных установках.

Преимуществами опреснителей фильтрационного типа (обратный ОСМОС) является:

  • простота технической реализации и надежность;
  • долговечность;
  • простой процесс замены мембран и длительная работоспособность мембран до их замены;
  • компактность и малый вес;
  • низкие удельные затраты энергии;
  • низкий уровень шума;
  • высокая производительность при минимальных эксплуатационных затратах;
  • установки фильтрационного типа снабжены автоматической системой, которая регулирует рабочее давление помпы в зависимости от степени солености воды;
  • возможность обработки различных типов вод (морской воды, малосоленой воды устьев рек, речной и озерной воды) с помощью одной установки;
  • с помощью установок фильтрационного типа (обратный ОСМОС) можно обрабатывать портовые воды, уделив должное внимание стадии префильтрации.

Недостатки дистилляционного типа опреснителей:

  • на выходе получается дистиллированная вода, то есть химически чистая, без каких-либо минералов и солей. Употребление такой воды в пищу приводит к вымыванию солей и минералов из костей, нарушению работы желудочно-кишечного тракта;
  • большие размеры агрегата;
  • большой расход электричества;
  • при опреснении соленой воды, происходит быстрое зарастание накипью поверхностей теплообмена, вследствие чего снижается экономичность работы установки;
  • необходимость постоянно следить за показателями соленомеров, брать пробы для определения качества дистиллята, не реже одного раза в сутки.

Недостатками опреснительной установки фильтрационного типа (обратный ОСМОС) являются:

  • мембрана является расходным материалом, который требует замены каждые 1,5-3 года, в зависимости от интенсивности использования;
  • установка дополнительного фильтра для предварительной очистки масла от воды.

Не вся вода на земле пригодна для использования на нужды человека, и поэтому введены соответствующие стандарты, определяющие требования к воде по видам ее потребления.

Одним из главных ограничений использования воды является ее химический состав. Превышение общего количества солей над установленными нормами или отдельных их компонентов делают воду непригодной для использования.

Морская вода, как и многие воды на континенте, имеет высокое содержание солей. Так, 1 т морской воды содержит 35 кг различных солей. Естественно, что прямое использование такой воды, особенно для питья, невозможно.

Российский ГОСТ на питьевую воду действует с 1982 г. Сейчас он дополнен более новым нормативом.

Санитарные правила и нормы (СанПиН) 2.1.4.550-96 «Питьевая вода».

В соответствии с действующими стандартами и нормами под термином питьевая вода высокого качества подразумевается:

  • Вода с соответствующими органолептическими показателями - прозрачная, без запаха и с приятным вкусом;
  • Вода с рН = 7-7,5 и жесткостью не выше 7 ммоль/л;
  • Вода, в которой суммарное количество полезных минералов не более 1 г/л;
  • Вода, в которой вредные химические примеси либо составляют десятые-сотые доли их ПДК, либо вообще отсутствуют (то есть их концентрации настолько малы, что лежат за гранью возможностей современных аналитических методов).
  • Вода, в которой нет болезнетворных бактерий и вирусов.

Характеристики опреснителей (обратный ОСМОС).

Благодаря особо компактной конструкции опреснители занимают немного места и могут быть свободно размещены на судах малых и средних размеров. Корпус опреснителей ОСМОС изготавливается из нержавеющей стали. Корпус осмотических мембран, выполняется, из высококачественной стали, и эпоксидной смолы, и надежно защищает мембраны от коррозии.

Одной из главной проблем в длительном морском рейсе становится отсутствие пресной воды. Основными показателями, определяющими качество пресной воды, являются соленость, характеризуемая содержанием растворенного хлористого натрия, и жесткость, обусловленная наличием в ней солей кальция и магния.

При установке на выходе еще одного фильтра, поставляемого по запросу клиента, который служит для реминерализации очищенной воды, происходит улучшение вкусовых свойств воды и преобразование ее в абсолютно пригодную для питья.

Кроме того, в случае обработки портовых вод или подозрения на возможное загрязнение воды углеводородами, рекомендуется установить фильтр предварительной очистки для отделения масла и воды, что в любом случае не навредит работе опреснительно-очистительной установки, но однозначно продлит срок службы мембран.

Оборудование для опреснения морской воды, на входе имеет содержание соли в воде 38000 PPM, на выходе 600 PPM.

ООО Дальневосточная Компания «ПРБ» имеет в наличии, на складе во Владивостоке , полностью автоматический Комплекс по опреснению морской воды методом обратного осмоса , производительностью 5 тонн в сутки (включая годовой комплект расходного СЗЧ), которая не требует постоянного присутствия вахтенного и технического персонала.

Обратный ОСМОС





Пресная вода – незаменимая часть нашего рациона, необходимая для выживания. Стремительный рост населения вызвал ее дефицит на планете. Исчерпание запасов питьевой воды заставило человечество искать способы ее самостоятельного изготовления. В качестве источника для опреснения используется мировой океан. Его воды очищают от излишка солей с помощью специальных установок, таких, как опреснитель морской воды.

Существуют различные методы, как опреснить воду в промышленных масштабах. Многие из них связаны с использованием больших энергоемких установок – дистилляторов и специальных фильтров. К основным методам опреснения в промышленности относятся следующие.

Применение химических реагентов

Для опреснения используют специальные вещества, которые реагируют с солями морской воды, образуя нерастворимые химические соединения. После окончания реакции нужно всего лишь убрать полученный осадок методом фильтрации.

В промышленности этот метод используют крайне редко, а в быту – никогда. К основным недостаткам такого способа очистки относятся:

  • большое количество реагентов;
  • значительная длительность процесса;
  • дороговизна.

Метод обратного осмоса

Этот хорошо зарекомендовавший себя способ получения питьевой воды применяется в промышленности давно. Он состоит в использовании очистительных мембран, которые изготавливают из полупроницаемого материала – полиамида или целлюлозы. Воду с высоким содержанием солей пропускают под давлением через мембраны, в результате чего молекулы H2O проходят через поры, а крупные ионы примесей задерживаются. Данный способ позволяет получить достаточно большое количество очищенной воды.

Опресняем воду самостоятельно

Многие люди проживают в засушливых районах, где дефицит пресной воды является серьезной проблемой. В некоторые населенные пункты питьевая вода не доставляется, поэтому местным жителям приходится добывать ее самостоятельно. Они накопили большой опыт,как опреснить морскую воду в домашних условиях.

Дистилляция воды

Вот как сделать опреснитель морской воды своими руками. Его действие основано на таком физическом процессе, как конденсация. Можно просто кипятить морскую воду в кастрюле, накрытой крышкой. Пар скапливается под крышкой и превращается в чистый конденсат. Однако при этом теряется большая часть пресной воды, так как она стекает назад в емкость.

Для решения проблемы можно усовершенствовать данный метод:

  1. Просверлите в крышке для кастрюли отверстие.
  2. Проденьте в него гибкую трубку и накройте кастрюлю крышкой.
  3. Второй конец трубки поместите в другой сосуд.
  4. Трубку накройте мокрым полотенцем, чтобы водяной пар остужался.
  5. Поставьте кастрюлю на огонь и дождитесь, когда вся вода сконденсируется в другом сосуде.

В кастрюле останется соль и остальные примеси, а в другом сосуде – чистая вода.

Но важно учесть, что полученная вода будет дистиллированной и не полезной для организма. Поэтому перед употреблением рекомендуется немного разбавить ее соленой водой.

К преимуществам метода относится его простота и возможность использования в быту, к недостаткам – небольшое количество полученной жидкости.

Метод замораживания

Поучиться,как из морской воды сделать пресную, можно и у жителей холодных районов земного шара. Речь идет об эскимосах, которые пользуются большими запасами пресной воды из ледников. Также они специально выставляют на мороз соленую воду и ждут образования кристаллов льда. Этот лед представляет собой замершие молекулы воды. Его растапливают и используют для питья и приготовления пищи.

Вода с примесями остается в жидком состоянии, поэтому от нее легко избавиться, просто вылив.

Использование специальных установок

В продаже появились специальные опреснительные установки для очистки морской воды. Наиболее популярный из них – солнечный опреснитель. Он обеспечивает испарение молекул H2O с помощью энергии солнца.

На дно помещается соленая вода. Пар конденсируется на стенках конуса, стекает и накапливается в приемнике внизу. Герметичная структура установки создает эффект парника и не позволяет пару выходить наружу, что повышает эффективность метода. Чтобы извлечь чистую воду, нужно, когда все выпарится, открутить пробку и слить жидкость в емкость.

Начнем с определения терминологии. Итак, что же такое опреснение морской воды и зачем это нужно? Это процесс, заключающийся в удалении из воды различных солей, дабы ее можно было пить или использовать для решения некоторых технических задач.

В море обычно содержится 3,5% солей, тогда как солевая концентрация в водопроводной воде, например, в США всего лишь 0,05%. Высокая концентрация нелетучих твердых веществ, растворенных в морской воде, исключает возможность ее использования в каких-либо целях.

Способы опреснения морской воды

Актуальные на сегодняшний день способы опреснения морской воды подразделяются на две группы:

  1. Без вмешательства в агрегатное состояние воды.
  2. Преобразование воды в газообразное или твердое состояние

Химическое опреснение морской воды

В соленую воду добавляют реагенты, которые соединяются с ионами солей, образовывая нерастворимые вещества. Для успешного завершения процесса объем реагентов обычно составляет около 5% от имеющегося объема воды. В качестве реагентов используют ионы и серебра.

Химическое опреснение применяется весьма редко из-за относительной дороговизны реагентов, больших временных затрат и ядовитости солей.

Для электродиализа используются специальные активные диафрагмы. Их изготавливают из пластмассы, катионитовых или анионитовых смол и резиновых наполнителей.

Ванна, наполненная морской водой, ограничивается положительной и отрицательной диафрагмами. Самые главные камеры, предназначенные для опреснения, отделяются от остальных отсеков ионитовыми полупроницаемыми мембранами.

Метод, также известный как «обратный осмос ». Его суть состоит в оказании давления на раствор с той стороны мембраны, где соль не будет проникать вместе с водой.

Специальные обратноосмотические системы, имеющие производительность 4 кубических метра в сутки и оказывающие на соленую воду давление примерно 160 кгс/см₂, оснащены мембранами из ацетилцеллюлозы. С обратной стороны мембран находятся пористые плиты из бронзы, способные оказывать сопротивление сильному давлению.

Среди недостатков ультрафильтрации отмечаются короткий эксплуатационный срок мембран и внушительные размеры поверхности, предназначенные для фильтрации.

Вымораживание морской воды

Поскольку океанский и морской лед не содержит солей, этот способ опреснения является довольно распространенным. Ради более качественного опреснения замороженную морскую воду плавят при температуре 20 градусов: таящая вода вымывает соли изо льда гораздо тщательнее.

Этот метод отличается простотой и экономичностью, однако для вымораживания необходимо громоздкое и профессиональное оборудование.

Термическое опреснение морской воды - самый популярный способ вывода солей из морской воды.

Суть процесса довольно проста: во время кипячения выходящий пар подвергается конденсации, вследствие чего получается опресненная вода (дистиллят).

В продаже наиболее часто встречаются установки, работающие по принципу обратного осмоса. Они идеально подходят для обработки жидкости из любых источников: рек, озер, морей и т.д. Тем не менее производительность установки зависит от уровня солености и температуры воды, предполагаемой к обработке.

Опреснительные установки состоят из теплообменных устройств (водонагреватели, испарители, конденсаторы), насосов для циркуляции и дистилляции воды, трубопроводов для соленой и пресной воды, а также различных приборов для управления и слежения за работой.

Исходя из способа обессоливания, соответствующее оборудование разделяется на установки поверхностного и бесповерхностного типа. Помимо этого, они классифицируются по назначению (опреснительные, испарительные, комбинированные), типу теплоносителя (паровые, газовые, водяные, электрические), методу выработки тепла (компрессионные и ступенчатые) и условиям работы (автономные и неавтономные).

Катера и яхты малых габаритов, как правило, оснащаются опреснительными установками с системой рекуперации энергии, которые работают от напряжения 12/24 вольта. Подобное оборудование может выдавать примерно 100 литров обессоленной воды в час.

Коммерческие, промысловые и рабочие судна оборудуются более производительными опреснителями, производящими до 30.000 литров чистой воды в сутки. Такие установки часто эксплуатируются на , в курортных зонах и прибрежных поселениях.

Проблемы опреснения морской воды

Наиболее востребованная на текущий момент технология обратного осмоса требует существенных затрат на производство и эксплуатацию мембран, а также большие энергетические мощности для работы установок. К тому же после опреснения остается соляной раствор высокой концентрации, который зачастую возвращают в океан или море, тем самым повышая уровень солености воды. С каждым годом эти обстоятельства делают опреснение все более сложным и дорогостоящим занятием.

Помимо этого, около 2/3 запасов пресной воды в мире заморожены в ледниках и снежных покровах. Остальная часть находится в почве, откуда ее выкачивают настолько быстро, что природа просто не успевает восполнять потери.

В связи с этим прогнозируется рост дефицита пресной воды в мировом масштабе.

По оценкам экспертов, к 2030 году более двух миллиардов человек, вероятно, будут испытывать ее нехватку.Тем более что количество пресной воды, используемое жителями в разных странах, имеет радикальные различия.

Например, американцы ежедневно расходуют около 400 литров на человека, тогда как в ряде малоразвитых стран потребляется всего лишь 19 литров, а дома почти половины всего населения планеты и вовсе не имеют водопровода.Все эти проблемы вскоре заставят человечество обратить пристальное внимание на океаны как источник воды для последующего опреснения.

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Запасы воды на планете Земля огромны, но большая часть доступной пресной воды распределена неравномерно. А морская непригодна для пищевой промышленности из-за солености. По этой же причине ее нельзя использовать для сельского хозяйства и бытовых нужд. В морской воде содержится не только соль, а еще более 40 химических элементов. Для того чтобы получить пригодную к использованию воду требуется опреснение морской воды – процесс, который позволяет получить пресную воду с содержанием солей менее 0,002 г/мл.

Существуют разные методы опреснения воды – от относительно простых и экономичных до масштабных и специализированных. В настоящее время продолжаются поиски дешевого и эффективного способа обессоливания.

Способы опреснения

Основные способы опреснения воды:

  • Дистилляция.
  • Ионизация.
  • Обратный осмос.
  • Электродиализ.

Это методы, которые можно использовать в крупных масштабах, для нужд промышленности. Среди них большой популярность пользуется дистилляция – она бывает простой или многоступенчатой. Во время дистилляции воду доводят до кипения, образуется водяной пар – чистая дистиллированная вода. В остатке же находятся соли.

С помощью дистилляции получают более половины всей опресняемой жидкости. Отдельно выделяют метод мембранной дистилляции, заключающийся в собирании водяного пара по одну сторону от специальной мембраны, которая пропускает только молекулы газа.

Обратный осмос – это один из самых экономичных методов. Подсчеты показывают, что опреснение 15 тонн исходного сырья будет стоить не больше 1 доллара. Суть метода в продавливании жидкости через чрезвычайно мелкие фильтры. Через поры проходит только чистая жидкость, соли и примеси остаются.

Электродиализ – это процесс пропускания жидкости через специальную электродную камеру. В камере находятся пластины, которые, соответственно заряду, притягивают катионы и анионы. Преимущество метода – высокая устойчивость оборудования к воздействию внешней среды. Так, электродиализ дает возможность проводить опреснение воды при высокой температуре. Минусы – необходимость установки специального оборудования.

Другие методы немного сложнее и распространены не так широко. Ограниченное применение связано с высокой себестоимостью опресненной воды.

В некоторых южных регионах используется достаточно простой метод – солнечное опреснение воды. Он заключается в нагревании воды на солнце. Пар улавливается, так получают пресную воду. Есть и обратный метод – опреснение воды замораживанием. Насыщенная солью жидкость замерзает медленнее, чем пресная – в момент замерзания их можно разделить.

Опреснение в промышленности

В промышленных масштабах недостаток чистой опресненной воды ощущается острее и зафиксирован более чем в полусотне стран. Кризис связан в первую очередь с активным развитием промышленности, быстрым ростом населения и несовершенством экологического законодательства. Поэтому вопрос опреснения воды в промышленных масштабах стоит очень остро. Это оптимальный путь добычи пресной воды в крупных масштабах – особенно использование опреснительных установок актуально в прибрежных зонах.

Большинство крупных опреснительных станций расположено в регионах с недостатком питьевой воды. К ним относится практически весь Ближний Восток, а также некоторые страны Северной Африки. Строительство станций продолжается также в Европе и США. Современные технологические мощности позволяют удовлетворить потребность населения в чистой питьевой воде даже в странах с минимальными природными ресурсами.

Что касается обстановки в России, то опреснительные технологии только начинают развиваться. Благодаря природным запасам и особенностям климата и территории, природных запасов хватит минимум на несколько десятков лет.

Новые возможности и альтернативы

Технологии опреснения несовершенны, поэтому продолжается поиск альтернативных возможностей. Наиболее перспективной представляется идея транспортировки льда из антарктического региона. Главная проблема состоит в длительности такой транспортировки и возможных последствиях от вмешательства в структуру ледника.

Еще одна технология – регенерация. Суть состоит в том, что сточные и поверхностные воды очищают и снова пускают в бытовой или промышленный оборот. Такая жидкость пригодна, по крайней мере, для технических и сельскохозяйственных нужд.

Особые опреснители

Существуют специальные судовые опреснители, которые предназначены для получения жидкости во время длительного плавания. Большинство таких опреснителей построено на основе мембранного фильтра. В настоящее время активно растет число судов, оборудованных такими опреснителями.

Еще одна категория – бытовые устройства. Они подходят не только для домашнего использования. Их можно устанавливать, например, в лаборатории, медицинские учреждения, косметические салоны. Бытовые устройства работают по принципу паровых дистилляторов. Они отличаются только объемом чистой жидкости, производимой за определенный промежуток времени. Существенный недостаток в том, что они требуют много электроэнергии.

Существующие разнообразные способы опреснения забортной морской воды можно разделить на две основные группы:

  • 1)опреснение без изменения агрегатного состояния жидкости (воды);
  • 2)опреснение, связанное с промежуточным переходом жидкого агрегатного состояния в твердое или газообразное (паровое).

Опреснение способами первой группы включает в себя такие виды, как химическое, электрохимическое, ультрафильтрация.

При химическом способе опреснения в воду вводят вещества, называемые реагентами, которые, взаимодействуя с находящимися в ней ионами солей, образуют нерастворимые, выпадающие в осадок вещества. Вследствие того, что морская вода содержит большое количество растворенных веществ, расход реагентов весьма значителен и составляет примерно 3-5 % количества опресненной воды. К веществам, способным образовывать нерастворимые соединения с натрием и хлором, относятся ионы серебра и бария, которые образуют выпадающие в осадок хлористое серебро и сернокислый барий. Эти реагенты дорогие, реакция осаждения с солями бария протекает медленно, соли ядовиты. Поэтому химическое опреснение используется редко.

При электрохимическом опреснении (электродиализе) применяют специальные электрохимические активные диафрагмы, состоящие из пластмассы, резины с наполнителем и анионитовых или катионитовых смол. Ванна с рассолом ограничена двумя диафрагмами: положительной и отрицательной. Под действием постоянного тока напряжением 110120 В ионы солей, растворенных в воде, устремляются к электродам. Положительные катионы через катион проницаемые диафрагмы, а анионы через анионитовую диафрагму проходят в крайние камеры, где встречаются с двумя пластинами: анодом и катодом. Встречаясь с одноименно заряженными диафрагмами, они остаются в этих камерах. В результате в промежуточных камерах оказывается обессоленная вода, которая стекает в отдельный сборник. Соли и рассолы из крайних камер отводятся за борт, а образующиеся газы (хлор и кислород) в атмосферу. Камеры, в которых опресняется вода, отделены от рассольных камер полупроницаемыми ионитовыми мембранами. При достаточном количестве пар мембран между анодом и катодом расход электроэнергии зависит от солености морской и опресненной воды: чем меньше разница между ними, тем процесс протекает экономичнее. Поэтому электродиализ целесообразно применять для опреснения слабосоленых вод при допустимом высоком солесодержании опресненной воды (5001000 мг/л). На судах, где требования к солесодержанию достаточно высокие, электродиализные опреснители не находят применения. Опытная электродиализная установка эксплуатировалась на траулере "Ногинск".

Опреснение ультрафильтрацией или так называемым способом обратного осмоса состоит в том, что солевой раствор оказывается под давлением со стороны мембраны, проницаемой для воды и непроницаемой для соли. Преснаявода проникает через мембрану в направлении, обратном обычному осмотическому (когда пресная вода вследствие осмотического давления проникает через мембрану в солевой раствор). В существующих установках производительностью около 4 м3/сут соленая вода под давлением около 150 кгс/см2 продавливается через мембраны ацетилцеллюлозного типа, обработанные перхлоратом магния для увеличения их водопроницаемости. С противоположной давлению стороны мембран установлены пористые бронзовые плиты, способные выдержать большое давление. При испытаниях установки с 1,5 %ным солевым раствором была получена вода с солесодержанием 6001000 мг/л Сl. Применение ультрафильтрации как способа опреснения ограничивается малым сроком службы пленок-мембран и большими размерами фильтрующей поверхности. К методам опреснения второй группы, относятся вымораживание и дистилляция, или термическое опреснение.

Опреснение вымораживанием основано на том, что в естественных природных условиях лед, образующийся в океанах и морях, является пресным. При искусственном медленном замораживании соленой морской воды вокруг ядер кристаллизации образуется пресный лед игольчатой структуры с вертикальным расположением игл льда. При этом в межигольчатых каналах концентрация раствора, а, следовательно, и его плотность, повышаются, и он, как более тяжелый, по мере вымораживания оседает вниз. При растаивании игольчатого льда образуется пресная вода с содержанием солей 5001000 мг/л Сl. При быстром замораживании рассол оказывается включенным в толщу льда, и сильное и интенсивное охлаждение приводит к замерзанию всей массы соленого раствора в единое ледяное тело. Для лучшего опреснения морского льда иногда применяется искусственное плавление его части при температуре ~20°С. Вода, образующаяся при таянии, способствует более полному вымыванию солей из льда. Способ вымораживания достаточно прост и экономичен, но требует сложного и громоздкого оборудования.

Дистилляция, или термическое опреснениенаиболее распространенный на морских судах способ получения пресной воды из забортной морской. Как известно, морская вода представляет собой раствор, состоящий из водылетучего растворителя и солейнелетучего растворенного в воде твердого вещества. Сущность дистилляции заключается в том, что забортную воду нагревают до кипения и выходящий пар собирают и конденсируют. Образуется пресная вода, называемая дистиллятом. Выпаривать воду можно как при кипении, так и без кипения. В последнем случае морскую воду нагревают при более высоком давлении, чем давление в камере испарения, куда направляется вода. Так как при этом температура воды превышает температуру насыщения, соответствующую давлению в камере испарения, то часть поступившей воды превращается в пар, который и конденсируется в дистиллят. Для парообразования используется теплота, содержащаяся в самой испаряемой воде, которая при этом охлаждается до температуры насыщения оставшегося рассола. Основное термодинамическое различие между процессами заключается в следующем: при кипящем процессе теплота подводится от внешнего источника и поддерживает температуру насыщения при данном постоянном давлении в испарителе, т. е. процесс является изотермическим; при некипящем процессе теплота подводится к морской воде без кипения до температуры выше температуры насыщения, соответствующей давлению в испарителе, и, следовательно, процесс испарения идет за счет внутренней теплоты и является адиабатным. Недостатком термического опреснения избыточного давления является его малая экономичность: на получение 1 кг дистиллята расходовалось до 700 ккал, что соответствует выходу 1012 т дистиллята на 1 т расходуемого топлива. Этот недостаток удалось преодолеть применением вакуумных испарителей с использованием утилизационной теплоты двигателей внутреннего сгорания и парогенераторов. Дистилляция, как уже было отмечено, основной способ опреснения морской воды, применяемый на судах торгового флота, и поэтому в дальнейшем будут рассмотрены только опреснительные установки, работающие на термическом опреснении.

В настоящее время исследуются новые способы водоопреснения, в частности путем образования кристаллогидратов и при помощи гидрофобного теплоносителя. Принцип кристаллогидратов заключается в выделении пресной воды из соленых растворов в форме кристаллов, которые в специальном расплавит еле разлагаются на чистую воду и гидрат-агент. В качестве гидрат-агентов для повторного использования в процессе используются такие вещества, как метилбромидгидраты, метилхлоридгидраты, гидраты изо-бутана. Сущность гидрофобного теплоносителя заключается в том, что различные смеси углеводородов, парафины, фторированные масла и другие вещества, инертные по отношению к воде и растворенным в ней солям, впрыскивают в теплонесущий дистиллят для нагрева. После этого дистиллят и теплоноситель разделяют и последний впрыскивают в морскую воду. При нагреве часть воды испаряется и образующийся пар в конденсаторе превращается в дистиллят. Гидрофобный теплоноситель отделяют от оставшегося после выпаривания рассола и возвращают в теплонесущий дистиллят для последующего нагрева.

Схемы опреснительных установок поверхностного и бесповерхностного типов изображены на рис. 1. В испарителе 1 поверхностного типа (рис. 1, а) находится греющая батарея 2, через которую проходит теплоносительпар или горячая вода.

Рис.1

а поверхностной (кипящей); бес поверхностной (адиабатной).

В результате нагрева и кипячения рассола в испарителе выделяется из морской воды так называемый вторичный пар, который направляется по трубопроводу в конденсатор 9. Пар охлаждается забортной водой, прокачиваемой по змеевику циркуляционным насосом 8, конденсируется и дистиллят откачивается дистиллятным насосом 7. Часть забортной воды, выходящей в подогретом состоянии из конденсатора, отводится через регулятор уровня 6 в испаритель. Для поддержания постоянной солености рассола в испарителе производится продувание рассольным насосом 4.

В установке с бесповерхностным испарителем 1 (рис. 1, б) отсутствуют греющие элементы с твердой поверхностью для теплопередачи. Морская вода перед поступлением в испаритель предварительно нагревается в подогревателе 3 теплоносителем до температуры, которая превышает температуру насыщения, соответствующую давлению, поддерживаемому в испарителе. При поступлении воды из подогревателя, где вода не кипит, так как давление в нем более высокое, в испаритель с более низким давлением происходит самоиспарение некоторой части воды за счет внутренней теплоты. Образовавшийся пар, как и в предыдущей схеме, поступает в конденсатор 9, прокачиваемый забортной водой от насоса 8, конденсируется и откачивается дистиллятным насосом 7. Часть прокачиваемой охлаждающей воды отводится для питания испарителя через регулятор уровня 6. Неиспарившаяся вода из испарителя циркуляционным рассольным насосом 5 многократно прокачивается через подогреватель 3 и вновь поступает на испарение, при этом часть рассола выдувается за борт через клапан. Преимущество бесповерхностных испарителей заключается в том, что вследствие отсутствия поверхности нагрева в них не образуется накипь, но они требуют установки насосов большей производительности.

Кроме рассмотренного основного признака способа испарения дистилляционные опреснительные установки можно классифицировать по ряду других признаков:

по назначению: опреснительные для получения питьевой воды; испарительные для получения котловой воды; комбинированные для получения питьевой, мытьевой и питательной воды;

  • -по роду теплоносителя: паровые, водяные, газовые, электрические;
  • -по давлению в испарителе: избыточного давления; вакуумные;
  • -по способу регенерации теплоты: компрессионные, в которых вторичный пар сжимается и используется в качестве греющего; ступенчатые, в которых пар, получаемый в предыдущих испарителях, используется в качестве греющего пара в последующих;
  • -по связи с судовой энергетической установкой: автономные, не связанные с работой СЭУ; неавтономные, включаемые в цикл работы главных и вспомогательных дизелей и парогенераторов. К ним относятся распространенные на промысловых судах утилизационные опреснительные установки, использующие теплоту водяной системы охлаждения главных двигателей.

Конструкция испарителя поверхностного типа (рис.2) вакуумной опреснительной установки СРТ с использованием в качестве теплоносителя отработавших газов от главного дизеля показана на рис. 2. Испаритель состоит из цилиндрического вертикального корпуса 4 с размещенными внутри двумя трубными решетками 5 и 9, к которым приварены трубки 8, расположенные в шахматном порядке. В межтрубном пространстве имеются две направляющие перегородки 7.

Отработавшие газы главного двигателя входят через патрубок 14 в межтрубное пространство, совершают два поворота, через стенки трубок передают теплоту на испарение рассола и уходят через патрубок 6 в атмосферу. В нижней крышке 13 расположены входной 12 и выходной 11 патрубки для морской воды и рассола, а также закрытый патрубок 10 с цинковым протектором для предохранения испарителя от коррозии. В верхней крышке имеются сепараторы пара: конусный 3 и сетчатый 2 с кольцами Рашига 1. Уравнительная трубка поплавкового регулятора уровня присоединена к патрубку 15. Производительность испарителя равна 500 кг/ч.

просмотров