Автоматическое оружие. Автоматические пушки Автоматическая пушка типа

Автоматическое оружие. Автоматические пушки Автоматическая пушка типа

Боевые машины пехоты (БМП) представляют сравнительно новый класс вооружения войск. Оснащение ими мотострелковых соединений придало им мобильность, огневую мощь, достаточную защищенность от огня противника и возможность успешно вести боевые действия в современном бою как при взаимодействии с танками, так и самостоятельно.

Действуя в составе танкового «шлейфа» БМП огнем автоматических пушек (АП) защищают танки от танкоопасной живой силы, в первую очередь расчетов ПТУР и РПГ, против которых, строго говоря, сам танк не имеет эффективного оружия, а также от танкоопасных легкобронированных целей, в первую очередь, самоходных установок ПТУР, и, в критических ситуациях, от самолетов и вертолетов. В типовых ситуациях последняя задача должна выполняться самоходными зенитными комплексами типа «Тунгуска» , также действующими в составе «шлейфа».

При самостоятельных действиях БМП должна поражать те же цели, но уже как представляющие опасность для нее самой, а также легкобронированные цели типа БТР, БМП, и, при наличии в составе ее вооружения ПТУР, также танки.

Характерные типы БМП представлены в табл.1 .

30-мм пушки состоят также на вооружении отечественных боевых машин десанта (БМД-2 , БМД-3 ), бронетранспортеров (БТР-80А ), и боевых разведывательно-дозорных машин (БРДМ).

таблица 1

Название
БМП,
страна
Масса,
т
Эки-
паж,
чел.
Де-
сант
Класс Мощн.
двига-
теля,
л.с.
Кал-
ибр
ору-
дия,
мм
Тип
орудия
М2А3
«Брэдли»

США
29,9 3 6 Плав. 600 25 М242
«Буш-
мастер»
FVS10
«Уорриор»
Великобр.
24,5 3 7 Неплав. 550 30 L21A1
«Рарден»
«Мардер»
Германия
33,5 3 6 Неплав. 600 20 Rh202
AMX-10P
Франция
14,5 3 8 Плав. 264 20 М693
БМП-2
Россия
14,3 3 7 Плав. 300 30 2А42
БМП-3
Россия
18,7 3 7 Плав. 500 100,
30
2А70,
2А72

По наиболее существенному классификационному признаку БМП разделяются на плавающие и не плавающие. Все отечественные БМП, начиная с БМП-1 , являются плавающими. В значительной степени условно можно выделить классы легких (менее 20 т), средних (20-40 т) и тяжелых (более 40 т) БМП. Последние, как правило, выполняются на танковой базе.

Характерный состав боекомплекта на примере автоматической пушки «Бушмастер» представлен в табл.2 .

Полубронебойный снаряд PGU-32/U разработан в последние годы. Ударный взрыватель в снаряде отсутствует, а возбуждение взрыва заряда взрывчатого вещества (ВВ) производится с помощью пиротехнической огневой цепи, в которой переход горение во взрыв происходит за сравнительно большое время (0,3 мс), что обеспечивает проникание снаряда за достаточно толстую броню (до 20 мм) и взрыв его внутри цели. Надежное функционирование снаряда наблюдается только при стрельбе по прочным преградам и не обеспечивается при стрельбе по грунту, в особенности рыхлому.

В военной печати неоднократно поднимался вопрос об обоснованности выбора диапазона калибров автоматических пушек БМП. Указывалось на низкое бронебойное действие снарядов этих калибров, слабое действие по живой силе при стрельбе на осколочное действие по грунту. Отмечается отсутствие научно обоснованной методики оптимизации параметров АП и отсутствие четко сформулированных задач стрельбы АП БМП.

С этих позиций большой интерес представляет вопрос о перспективном калибре пушек отечественных БМП и в более широком плане – об их принципиальной схеме вооружения.

таблица 2

Снаряды к 25-мм пушке М242 «Бушмастер»

Масса
патрона,
г
Масса
снаряда,
г
Макс.давле-
ние в канале
ствола, МПа
Начальная
скорость,
м/с
Полетное вре-
мя на даль-
ность 2000 м, с
Бронебойный подкалиберный с отделяемым поддоном М791 APDS-T
455 134 410 1345 1,7
Осколочно-фугасно-зажигательный М792 HEI-T
493 184 360 1100 3,6
Полубронебойный PGU-32/U SAPHEI-T
18,7 3 7 Плав. 500

В настоящее время основным калибром отечественных автоматических пушек Сухопутных войск, ВВС и ВМФ является калибр 30 мм, а их монопольным разработчиком – Тульское КБП (конструкторы В.П.Грязев, А.Г.Шипунов), создавшее десять типов 30-мм пушек, в том числе одноствольных, двуствольных и шестиствольных. Использование одного калибра во всех видах Вооруженных сил и унификация боеприпасов является несомненным преимуществом, но в то же время значительно ограничивает боевые возможности автоматических пушек. Последнее в меньшей степени относится к авиационным пушкам и в большей – к пушкам БМП, зенитным пушкам Сухопутных войск и зенитным корабельным автоматам.

Применительно к пушкам БМП главным и решающим фактором негативной оценки калибра 30 мм является неудовлетворительное бронебойное действие. Пробиваемая толщина брони 30-мм бронебойным подкалиберным снарядом «Трезубка» под углом 60° от нормали на дальности 1500 м составляет 25 мм, что недостаточно для поражения лобовой брони состоящих на вооружении иностранных БМП, например, БМП «Мардер» , а тем более вновь разрабатываемых БМП с повышенной противоснарядной стойкостью. К ним относится многоцелевая бронированная машина, разрабатываемая в настоящее время франко-германо-британским объединением. Машина имеет броню из высокопрочного алюминиевого сплава со стальным эквивалентом лобового листа до 40 мм, пушку калибра 45-120 мм и массу до 34 т. Полномасштабное производство начнется в 2002 году, предполагается выпустить в общей сложности 11 тысяч машин.

Так и не был создан отечественный 30-мм кумулятивный снаряд, хотя за рубежом такие снаряды имеются (например, 30-мм кумулятивно-осколочный снаряд М789 фирмы PRIMEX, США). В результате 30-мм пушки рискуют оказаться в положении слабосильного оружия, способного лишь «поцарапать» броню противника.

Не блещет эффективностью и действие 30-мм осколочно-фугасных снарядов по живой силе. Это объясняется как малой массой заряда ВВ А-1Х-2 (48,5 г), низким коэффициентом наполнения (0,125, полная масса снаряда 389 г) и, как следствие, небольшим числом убойных осколков, так и специфическим исполнением ударного взрывателя, не обеспечивающим мгновенный разрыв снаряда на поверхности земли.

Взрыватель имеет шариковый привод ударника, осуществляемый посредством обжатия колпака. Такая конструкция с одной стороны обеспечивает защиту взрывателя от самопроизвольного срабатывания при ударе дождевых капель (противодождевое исполнение), с другой стороны совместно с действием газодинамического замедлителя создает небольшое замедление срабатывания при стрельбе по тонкостенным транспортным средствам с целью реализации разрыва во внутреннем объеме цели. При стрельбе по грунтовой поверхности, в особенности рыхлой структуры (пахоте, торфянику, песку), а также по снегу, замедленное действие взрывателя имеет отрицательным следствием значительное заглубление снаряда в грунт к моменту разрыва (для калибра 30 мм – до половины длины корпуса и более) и перехват значительной части осколков грунтом с образованием «мертвого угла» вылета.

Сравнительно слабым является действие 30-мм осколочно-фугасных снарядов по сооружениям. На дальностях более 1000 м 30-мм ОФС не пробивает кирпичную стенку «в один кирпич» (0,25 м). Между тем при использовании БМП в региональных конфликтах способность борьбы с живой силой в зданиях и сооружениях приобретает решающую роль. Например, в ливанской кампании 1976 года в боях сирийской армии с отрядами ООП в Бейруте и Сайде великолепно зарекомендовали себя приданные сирийским танковым частям 57-мм зенитные самоходные установки ЗСУ-57-2 , которые эффективно очищали верхние этажи домов от снайперов и расчетов РПГ.

В целом приходится признать, что сомнения относительно перспектив дальнейшего успешного использования в БМП пушек калибра 25-30 мм являются достаточно обоснованными.

Несоответствие диапазона 20-30 мм реальным задачам БМП привели к нескольким направлениям дальнейшего развития пушечного вооружения БМП:

1. вооружение БМП крупнокалиберной неавтоматической пушкой. Примером может служить южнокорейская боевая машина пехоты KIFV , имеющая варианты вооружения 75-мм и 90-мм пушками.

2. вооружение БМП двумя пушками – крупнокалиберной неавтоматической и малокалиберной автоматической. Примером такого нетрадиционного решения, не имеющего аналогов за рубежом, является отечественная БМП-3 . Обе пушки (100-мм пушка-пусковая установка 2А70 и 30-мм автоматическая пушка 2А72 ) вместе с 7,62-мм пулеметом размещаются в едином блоке, стабилизированном в двух плоскостях электромеханическим стабилизатором. Боекомплект 100-мм пушки составляет 40 выстрелов, из них 22 размещаются в автомате заряжания и 18 – в дополнительной укладке. Там же располагаются 8 ПТУР. Боекомплект 30-мм пушки 2А72 составляет 500 патронов.

До настоящего времени на вооружении состоял 100-мм выстрел ЗУОФ17 , разработанный НИМИ. В этом выстреле был использован снаряд ЗОФ32 , ранее разработанный для буксируемой пушки БС-3 и самоходной пушки СУ-100 , имеющий толстостенный корпус из стали С-60 , малый коэффициент наполнения (0,108) и, как следствие, невысокое осколочное действие. В настоящее время Тульским КБП разработан под руководством А.Г. Шипунова и С.М. Березина новый 100-мм выстрел ЗУОФ19 с увеличенными дальностью стрельбы и осколочным действием. В качестве замены штатной противотанковой управляемой ракеты (ПТУР) 9М117 , запускаемой из пушечного ствола, разработана новая ПТУР 9М117М1 «Аркан» с увеличенной дальностью полета (до 5500 м) и бронепробиваемостью (до 750 мм).

Двухпушечная схема вооружения БМП с одной стороны является смелым техническим решением, возможно, предугадывающим генеральное направление развития вооружения БМП будущего, с другой – продолжает оставаться предметом острых дискуссий. Как уже указывалось выше, калибр 30 мм со многих позиций оказывается недостаточным. С другой стороны, указывают на слабое действие 100-мм снарядов. В ходе региональных конфликтов последних десятилетий остро выявилась потребность в так называемых штурмовых самоходных крупнокалиберных орудиях (до 152 мм) батальонного и полкового звена, способных сопровождать пехоту «огнем и колесами», имеющих небольшие дальности стрельбы, но мощное осколочное и компрессионное действие снарядов. В случае появления штурмовых орудий возникает непростой вопрос о разделении функций этих орудий и БМП.

3. вооружение БМП автоматической пушкой более крупного калибра. В отличие от первых двух революционных направлений этот путь является эволюционным. При переходе на более крупный калибр уменьшаются темп стрельбы и численность боекомплекта. Например, масса 40-мм выстрела примерно в два раза больше массы 30-мм выстрела (соответственно примерно 2 и 1 кг), поэтому переход с калибра 30 мм на 40 мм при фиксированной массе боекомплекта приведет к снижению его численности в два раза (при фиксированной массе системы оружия (установка + боекомплект) - к снижению в 2,5-3 раза) и к такому же снижению числа выстрелов в очереди (при фиксированном числе очередей), но одновременно к значительному увеличению эффективности каждого выстрела. При этом следует учитывать дополнительные благоприятные факторы -уменьшение потери скорости на траектории у более крупного снаряда и уменьшение относительного заглубления в грунт. Снижение темпа стрельбы обеспечивает уменьшение износа ствола и существенное увеличение живучести автоматической пушки.

Определенный выше оптимальный диапазон калибров АП 35-45 мм включает в себя ряд штатных калибров, в том числе зарубежных (35, 40 мм) и отечественных (37, 45 мм). По-видимому, наиболее перспективным является калибр 40 мм, так как с одной стороны по импульсу отдачи он является еще приемлемым для установки на летательных аппаратах, что в перспективе сохранит трехвидовую (СВ, ВВС, ВМФ) унификацию автоматических пушек, с другой стороны этот калибр широко распространен за рубежом, что обеспечит возможность мировой стандартизации оружия и повышение экспортных возможностей.

Наиболее известными 40-мм автоматическими пушками являются пушки L60 , L70 шведской фирмы «Бофорс». Пушка L70 находится на вооружении 11 стран НАТО (в 6-ти она выпускалась по лицензии). К 1985 году было произведено свыше 6 тыс. таких установок и более 10 млн. боеприпасов к ним. В настоящее время создан усовершенствованный вариант пушки, получивший обозначение «75» .

В сухопутных войсках пушка долгое время использовалась только как зенитная буксируемая, либо в составе зенитных самоходных комплексов (в прошлом ЗСУ «Сержант Йорк» [США], в настоящее время ЗСУ TRIDON , ЗАК TriAD [Швеция]) и только в последнее время была принята на вооружение боевой машины пехоты CV-90 (Швеция). Масса пушки – 560 кг, скорострельность – 320 выстр./мин. Масса выстрела, масса снаряда и начальная скорость составляют соответственно для ОФЗ снаряда 2500 г, 964 г, и 950 м/с, для бронебойно-зажигательного снаряда – 2400 г, 880 г и 1020 м/с.

Пушка имеет в составе боекомплекта бронебойный подкалиберный снаряд с отделяемым поддоном, способный пробивать броню толщиной 100 мм (!) под углом 60° от нормали (дальность не указана). Указывается, что при этом обеспечивается поражение лобовой брони танков Т-54 , Т-55 , Т-62 и бортовой брони танков «Леопард-2А1» , М1 «Абрамс» и «Челленджер» .

Недостатком пушки является отсутствие стабилизатора, что исключает возможность успешной стрельбы в движении. В настоящее время разработана опытная конструкция БМП CV-9040B со стабилизированной башней. Эта башня может устанавливаться на различные платформы. В частности, фирмой проводилась опытная установка этой башни на российские БМП-1 , БМП-2 .

БМП CV-9040 разработана совместно шведскими фирмами «Хэгглундс» (платформа) и Бофорс (башня с вооружением и боеприпасы). Серийное производство начато в 1993 году. Масса БМП – 22,8 т, мощность дизельного двигателя – 446 кВт, максимальная скорость на шоссе – 70 км/ч. БМП является частью семейства бронированных машин CV-90 , отличающихся назначением и калибром орудия (табл. 3 ).

таблица 3

Семейство бронированных машин CV-90

Тип Назначение Пушка
БМП

25-мм АП «Бушмастер» или «Маузер»

БМП

30-мм АП «Бушмастер» или «Маузер»

БМП

40-мм АП L70

CV-9040AA

ЗСУ

40-мм АП L70

CV-90105

Истребитель
танков

105-мм пушка CN-105-G2

CV-90120

Легкий танк

120-мм пушка 120-CTG-L50

В состав семейства CV-90 входят также разведывательная машина, командная машина и ремонтно-эвакуационная машина.

Другой 40-мм автоматической пушкой, разработанной специально для вооружения легкой бронетехники, является пушка CTWS (Cased Telescoped Weapon System – система оружия с телескопическим выстрелом) фирмы «Эллайент Тексистемз»(США). Пушка разработана в составе дистанционно управляемой низкопрофильной башни, имеющей общую массу 892 кг. Телескопический боеприпас отличается от обычного тем, что его пороховой заряд выполнен в форме трубки, по оси которой помещен снаряд. Вышибной заряд выталкивает снаряд из гильзы еще до момента воспламенения основного заряда. При этом освобождается пространство в гильзе, заполняемое продуктами сгорания вышибного заряда. В результате этого пороховой заряд высокой плотности может сгорать с той же эффективностью, что и заряды меньшей плотности в гильзе большего объема. При этом достигается большая начальная скорость по сравнению с соответствующей величиной для гильзы классической схемы. Другое преимущество создается цилиндрической формой гильзы. Гильзы этой формы более удобны для хранения и в укладке занимают в два раза меньший объем по сравнению с обычными гильзами.

Другой характерной особенностью пушки CTWS является поперечная схема заряжания. Затвор пушки выполнен в виде поворотного цилиндра, снабженного каналом для телескопической гильзы. Полная масса башни с пушкой – 892 кг, скорострельность – 200 выстр./мин, масса патрона – 1,8 кг, начальная скорость БОПС – 1600 м/с.

Наряду с 40-мм пушками в качестве перспективного оружия для новых БМП рассматриваются и автоматические пушки более крупных калибров. Характерным примером является 50-мм автоматическая пушка RH503 фирмы «Маузер», входящей в корпорацию «Рейнметалл». Пушка предназначается для вооружения разрабатываемой с 1984 года тяжелой БМП «Мардер-2» с боевой массой 43 т и мощностью двигателя 1100 кВт (1500 л.с.). Боекомплект пушки включает в себя подкалиберный бронебойный снаряд с отделяемым поддоном APFSDS-T фирмы «Рейнметалл эмьюнишен» и осколочно-пучковый снаряд HETF-T M-DN191 фирмы «Диль». Следует отметить, что снаряд HETF-T является первым в мире серийно выпускаемым осколочно-пучковым снарядом, хотя разработки этих снарядов ведутся уже в течение 30 лет, в том числе и в нашей стране. Пушка оснащена автоматическим установщиком дистанционного взрывателя (АУДВ) осколочно-пучкового снаряда, имеет беззвеньевую подачу боеприпасов и сменный ствол калибра 35 мм для проведения учебных стрельб. Масса пушки – 540 кг, масса ствола – 170 кг, длина ствола – 4250 мм (85 калибров), усилие отдачи – 48 кН, максимальное давление в канале ствола – 560 Мпа, скорострельность – 150-400 выстр./мин. Масса подкалиберного снаряда APFSDS-T составляет 640 г, начальная скорость – 1600 м/с, дульная энергия 820 кДж, масса патрона – 200 г, масса пороха – 540 г.

При разработке новых 40-мм АП для БМП и боеприпасов к ним за рубежом широко используется опыт, накопленный при многолетнем производстве и эксплуатации 40-мм зенитных артиллерийских комплексов (ЗАК). 40-мм корабельные ЗАК появились на вооружении ВМФ западных стран в период Второй мировой войны (орудия M1 , М1А1 , М2 , М2А1 , Мк1 шведской фирмы «Бофорс»). Ими, в частности, были вооружены системы ПВО линейных кораблей США типа «Айова» (по 20 спаренных 40-мм установок на корабль). В 50-х годах 40-мм ЗАК Мк5 , Мк7 были приняты на вооружение ВМФ Великобритании.

Современные 40-мм ЗАК (см. таблицу 4 ) предназначены в первую очередь для борьбы с противокорабельными крылатыми ракетами (ПКР).

Направления дальнейшего развития малокалиберных корабельных ЗАК в значительной мере определяются выбором способа поражения – прямым попаданием снаряда в противокорабельную ракету или поражения ее осколочным полем с траектории. Первый способ требует высокой точности стрельбы, но обеспечивает наибольшую вероятность поражения при попадании. В этом случае как наиболее эффективный рассматривается бронебойный снаряд с отделяемым или неотделяемым подкалиберным сердечником из тяжелого сплава на основе вольфрама или урана, способный пробить корпус полубронебойной боевой части ПКР и вызвать детонацию заряда взрывчатого вещества. При этом взрыв БЧ полностью уничтожает ПКР. Ее части и осколки, долетевшие до корабля, представляют неизмеримо меньшую опасность.

таблица 4

40-мм кора-
бельный
ЗАК
Страна Пушка Кол-во
ство-
лов
Общая
скорос-
трельность
выстр./мин

«Тринити»

Швеция Бофорс L70 1 330

«Бофорс»

Швеция Бофорс L70 2 600

«Дардо»

Италия Бреда Компакт 2 600

«Фаст Форти»

Италия Бофорс L70 1 450

Второй способ – поражение ПКР при траекторном разрыве – включает в себя два случая: разрыв на пролете (на промахе) для снарядов с круговым полем осколков и разрыв в упрежденной точке для снарядов с осевым полем. В обоих случаях снаряд должен быть укомплектован неконтактным или дистанционным электронным взрывателем. Объем электронного взрывателя, выполненного с применением интегральных схем и малогабаритных источников питания, составляет не менее 15-20 куб.см и не вписывается в объемы снарядов калибра 20-30 мм.

40-мм снаряды корабельных комплексов с неконтактным взрывателем и готовыми поражающими элементами в настоящее время производится рядом фирм. Одна из последних разработок фирмы «Бофорс» представлена 40-мм снарядом 3P-HV (Prefragmented Programmable Proximity High Velocity). Масса снаряда составляет 1 кг, масса выстрела – 2,8 кг, масса заряда ВВ – 0,14 кг. Оболочка снаряда содержит 1000 шт. готовых поражающих элементов в виде шариков из вольфрамового сплава диаметром 3 мм. При разрыве снаряда образуется также около трех тысяч осколков естественного дробления, способных пробивать дюралевый щит толщиной 2 мм, установленный на расстоянии 1,5 м от точки подрыва. Наибольшее поражающее действие при стрельбе по самолету отмечается в случае подрыва снаряда на расстоянии 2,5 м от цели, а при стрельбе по ПКР – до 2 м. Взрыватель снаряда является программируемым, т.е. может быть установлен как на неконтактное, так и на ударное действие. В последнем случае снаряд может пробивать незакаленные стальные листы толщиной до 25 мм, что позволяет применять его для поражения легкобронированных целей.

Фирмой «Бофорс» разработан опытный 40-мм корректируемый снаряд 4P GJS (Gas Jet Controlled) для возможного его включения в боекомплект корабельного ЗАК «Тринити» . Коррекция траектории осуществляется при помощи шести газоструйных рулей, располагающихся по окружности вокруг центра тяжести снаряда. За 5-6 коррекций траектория снаряда может сместиться относительно первоначальной на расстояние до 50 м, при этом поперечная составляющая скорости коррекции траектории составляет 15 м/с. Радиокомандная система коррекции может корректировать траекторию не только отдельного снаряда, но и снарядов всего залпа, состоящего из 5-10 выстрелов.

Изучаются другие перспективные конструкции 40-мм снарядов ЗАК, в том числе осколочно-пучковые снаряды, снаряды схемы «СВАРОГ» , снаряды с уменьшенным полетным временем, снаряды с кольцевым поражающим элементом, бронебойно-осколочные снаряды прямого попадания и т.п. Включение указанных снарядов в боекомплект БМП позволило бы резко расширить тактические возможности БМП в борьбе с наземными и воздушными целями.

Одной из ключевых проблем, возникающих при перевооружении БМП 40-мм пушками, является осуществление селективного питания пушек боеприпасами. Оно становится необходимым ввиду уменьшения численности боекомплекта и увеличения роли каждого отдельного выстрела. В этих условиях полностью неприемлемо одноленточное питание с комплектацией ленты осколочно-фугасными и бронебойными снарядами в фиксированной пропорции. Более эффективным является двухленточное питание, однако и оно не решает проблемы в случае разветвленного боекомплекта (3-4 типа снарядов). Выход заключается в использовании беззвеньевого питания с дистанционным управлением системой заряжания. Другая проблема связана с применением снарядов с дистанционными взрывателями, в том числе осколочно-пучковых, с использованием АУДВ, что существенно усложняет систему управления огнем БМП.

Разработка и постановка на вооружение первых образцов автоматического оружия в конце 19 - начале 20 века выявили новую проблему - обеспечение прицельной стрельбы очередями, когда предыдущий выстрел сбивает оружие с линии прицеливания перед следующим выстрелом. До этого времени стрельба велась одиночными выстрелами, в процессе осуществления которых стрелки были способны удерживать оружие на линии прицеливания вплоть до момента вылета пули из ствола. Для пулеметов проблема прицельной стрельбы очередями была решена путем использования массивных станков и переходом к поражению преимущественно групповых целей, когда рассеивание пуль является допустимым. Избыточный расход патронов компенсируется относительно большим боекомплектом, носимым расчетом из двух человек, и преимущественно позиционной тактикой применения пулеметов. При этом огонь ведется из удобных положений с опорой станка или сошек пулемета в грунт.


В отличие от пулеметов индивидуальное автоматическое оружие стрелков (пистолет-пулемет, штурмовая винтовка) предназначено для маневренной тактики с частыми перемещениями, стрельбой с хода, из неудобных положений, сопровождающееся удержанием оружия на весу силой мышц рук и компенсацией отдачи с помощью упора приклада в плечо. В связи с этим индивидуальное автоматическое оружие должно быть ограничено в весе и силе отдачи, которые определяются физическими возможностями средних стрелков. составляющих большинство пехотных подразделений. Современная тактика ведения боя предусматривает занятие закрытых от наблюдения позиций, передвижение в рассыпном строю, перебежками от укрытия к укрытию, со сменой направления движения. В таких условиях поражение целей одиночными выстрелами становится проблематичным, особенно для средних стрелков. Поэтому стрельба ведется в основном в автоматическом режиме с намерением поразить цель хотя одним выстрелом из очереди. Направление развития индивидуального автоматического оружия соответствует указанной тактики ведения боя. Во время Первой мировой войны на вооружение был принят новый вид индивидуального оружия - пистолет-пулемет, механизм перезаряжания которого работал в автоматическом режиме. В связи с ограниченной энергетикой пистолетных патронов новое оружие использовалось на коротких дистанциях ведения огня. На средних и дальних дистанциях продолжали использоваться неавтоматические винтовки.

В ходе Второй мировой войны всеми воюющими сторонами была признана необходимость создания оружия, основанного на патроне калибра 7.92х33 / 7,62х39 мм, энергетика которого занимает промежуточное положение между пистолетным и винтовочным патроном., что обеспечивает поражение целей на ближней и средней дистанциях, характерных для современной тактики ведения боя. Перевооружение пехотных частей оружием, основанном на промежуточном патроне, позволило существенно повысить эффективность стрельбы средних стрелков. Поражение целей на дальней дистанции перешло в обязанность специально подготовленных и обладающих специальными навыками немногочисленных лучших стрелков - пулеметчиков, ведущих огонь очередями, и снайперов, ведущих одиночный огонь патронами большего калибра. Однако применение подобной тактики ведения боевых действий в период после Второй мировой войны привело к резкому росту расходов боеприпасов в расчете на одного пораженного противника.

Во время Корейской войны командование американской армии было вынуждено обратить внимание на величину расхода патронов в расчете на одного пораженного противника, достигшую уровня 50 тысяч единиц. В 1952 году была начата первая программа правительства США по совершенствованию индивидуального автоматического оружия - SALVO. Затем были реализованы программы SPIW, JSSAP и SAMP. В настоящее время осуществляется очередная программа LSAT. Результатом 60-летней программной деятельности явилось принятие на вооружение американской армии штурмовой винтовки М16, использующей малоимпульсный патрон уменьшенного калибра 5,56х45 мм. Попытки использования патронов ещё более уменьшеного калибра вели к падению эффективности стрельбы на средних дистанциях. Аналогичный выбор был сделан и армиями других стран.

Способы обеспечения прицельной стрельбы очередями.

Стрелок, в процессе стрельбы очередью, испытывает разнонаправленные силовые воздействия, приходящиеся на его руки и тело. Силовые воздействия усугубляются неудобным положением стрелка - стрельба ведется, как правило, из положения стоя.

Вначале каждого выстрела на стрелка действует максимальный по величине импульс отдачи, связанный с давлением пороховых газов на закрытый затвор. Импульс действует в течение примерно 0,001 секунды до момента открытия затвора. После непродолжительного периода равномерного действия силы отдачи затвора, сжимающего возвратную пружину, на стрелка действует третий импульс отдачи, связанный с ударом затвора в заднюю стенку ствольной коробки. Цикл перезарядки оружия продолжается вторым периодом равномерного действия силы упругости возвратной пружины и заканчивается четвертым импульсом силы, направленным вперед и связанным с ударом затвора в ствол. Оружие также испытывает циклические колебания от перемещения своего центра тяжести, связанного с возвратно-поступательным движением затвора. Под действием импульсов отдачи тело стрелка смещается назад. После окончания импульсов стрелок стремится занять исходное положение - тело смещается вперед, т.е. происходят колебательные движения сложной системы, состоящей из множества шарнирно соединенных элементов - головы, рук, ног, туловища и позвоночника. Восстановление близкого к исходному положению после каждого выстрела можно достичь только при наличии специальных навыков, основанных на природных способностях стрелка и развитых длительными тренировками.

Положение усугубляется тем, что в большинстве моделей оружия ось ствола, вдоль которого действует импульс отдачи, не совпадает с осью симметрии приклада, опирающегося на плечо стрелка. Сила отдачи и сила реакции опоры создают момент, подбрасывающий вверх дульный срез ствола. За время одного цикла перезарядки оружия, равного примерно 0,1 секунды, нервно-мышечная система стрелка не в состоянии возвратить оружие на линию прицеливания. Поэтому второй выстрел в очереди уходит выше первоначальной точки прицеливания, третий выстрел ещё выше и т.д. Дульный тормоз-компенсатор и специальные навыки помогают лишь частично уменьшить отклонение оружия от цели. Исходя из импульсной диаграммы, прицельная стрельба очередями из неудобных положений зависит от уровня реализации в современном индивидуальном автоматическом оружии следующих технических решений:

Снижение величины максимального импульса отдачи достигается переходом от закрытого к полусвободному затвору, начинающего движение назад с самого начала возгорания метательного заряда в стволе, при этом производство выстрела должно производится на выкате затвора вперед;
- устранение подбрасывающего момента достигается подъемом оси симметрии приклада на уровень оси ствола с соответствующим выносом вверх линии визирования прицельных приспособлений;
- устранение удара затвора в ствольную коробку и ствол достигается применением сбалансированной автоматики.

Первые два решения полностью или частично реализованы в принятых на вооружение образцах индивидуального автоматического оружия. Последнее решение до сих пор не имеет эффективной реализации даже в опытных конструкциях. Известная лафетная схема, основанная на совместном откате подвижной группы, состоящей из ствола, затвора и промежуточного накопителя на 3 патрона, производящей в процессе отката очередь фиксированной длины, не может быть признана сбалансированной по определению - в конструкции оружия отсутствует балансир. Попытка его использовать приведет к двукратному росту массы оружия, которое перестанет быть индивидуальным. Кроме того, после окончания фиксированной очереди стрелок испытывает утроенную отдачу, превышающую по величине отдачу от выстрела снайперской винтовки и усугубляемую пониженным весом штурмовой винтовки.

В известной схеме сбалансированной автоматики одновременно с затвором в противоположном направлении движется балансир, соударяющийся с затвором в крайних положениях. Указанное решение имеет принципиальный недостаток - с целью синхронизации движения затвора и балансира применяют реечно-шестеренчатую передачу, испытывающую в процессе работы знакопеременные нагрузки, вызывающие выкрашивание зубьев передачи, что значительно снижает ресурс механизма перезаряжания относительно ресурса остальных частей оружия. В связи с этим представляется целесообразным заменить в механизме перезаряжания реечно-шестеренчатую передачу на рычажную, выдерживающую знакопеременные нагрузки. Балансир закрепляется на одном плече рычага, ось вращения которого пересекается под углом 90 градусов с осью ствола. Второе плечо рычага связано шарнирной тягой с затвором. Длина плеч рычага равна ходу затвора между крайними точками. В процессе отката балансир движется навстречу затвору, в процессе наката - в противоположном направлении. В крайних положениях рычаг, попеременно работающий на сжатие или растяжение, не даёт затвору ударяться в ствол или ствольную коробку.

Кинематика кривошипно-шатунного механизма перезаряжания.
Вышеописанная схема сбалансированной автоматики представляет собой кривошипно-шатунный механизм перезаряжания, включающий один вращающийся элемент - кривошип, один скользящий - затвор и один качающийся - шатун. Во время действия давления газов в стволе ведущим элементом автоматики является затвор, в течение остального времени одного цикла перезарядки - кривошип.
Скорость движения затвора изменяется по синусоидальному закону в зависимости от угла поворота кривошипа:
- в верхней и нижней мертвых точках, соответствующих 0 и 180 градусам, скорость затвора равна нулю;
- в точках, соответствующих 90 и 270 градусам, скорость затвора максимальна.

Скорость вращения кривошипа в одном цикле перезарядки изменяется от максимальной, приходящейся на точку производства выстрелов, до минимальной, соответствующей углу поворота кривошипа на 180 градусов. Темп стрельбы оружия с кривошипно-шатунным механизмом перезаряжания в основном определяется массой и радиусом вращения кривошипа, а также точкой производства выстрелов, измеряемой в градусах поворота кривошипа. Дополнительными факторами, влияющими на темп стрельбы, являются масса затвора с шатуном, силы упругости возвратной и боевой пружин, сила трения в системе. Возвратная пружина применяется с целью аккумулирования энергии отдачи и максимального замедления вращения кривошипа при повороте на 180 градусов, в нижней мертвой точке, соответствующей крайнему заднему положению затвора. Накопленная в возвратной пружине энергия возвращается кривошипу при начале движения затвора вперед. В этой же точке, после завершения стрельбы производится останов затвора путем его упора в затворную задержку. Затраты кинетической энергии кривошипа на взведение боевой пружины и преодоление силы трения в системе компенсируются только за счет силы отдачи, действующей на кривошип.

Вектор силы отдачи включает горизонтальную и вертикальную составляющие. При этом на увеличение кинетической энергии кривошипа оказывает влияние только вертикальная составляющая вектора силы отдачи, направленная по касательной к окружности вращения кривошипа. Горизонтальная составляющая воспринимается неподвижной осью вращения кривошипа. С целью восприятия этой составляющей кривошип, как правило, выполняется в виде осевого шарнира большого диаметра, установленного в кольцевом выступе стенки ствольной коробки. Величина вертикальной составляющей вектора силы отдачи зависит от угла поворота кривошипа относительно верхней мертвой точки в момент производства выстрела, а также от сектора поворота кривошипа за время действия давления газов в стволе.

В кривошипно-шатунном механизме перезаряжания возможна реализация одного из следующих моментов производства выстрелов:
- выстрел при недоходе кривошипа до верхней мертвой точки с последующим реверсированием вращения кривошипа, его повороте в обратную сторону на угол, меньший 360 градусов, до второй точки производства выстрелов и т.д.;
- выстрел при переходе кривошипа через верхнюю мертвую точку, ускорение вращения кривошипа, продолжение его поворота на угол в 360 градусов до единственной точки производства выстрелов и т.д.

С целью обеспечения безударного режима работы механизма перезаряжания стрельба производится на выкате затвора. В этом случае на стабильность темпа стрельбы существенное влияние будет оказывать эксплуатационный разброс энергетики метательных зарядов и продолжительности срабатывания капсюлей патронов.
При недоходе кривошипа до верхней мертвой точки в момент производства выстрелов стабильность темпа стрельбы поддерживается с помощью возможности страхующего упора затвора в ствол в случае недостаточной энергии выстрела следующего патрона для реверсирования вращения кривошипа, превысившего заданную скорость под действием избыточной энергии выстрела предыдущего патрона.

При переходе кривошипа через верхнюю мертвую точку в момент производства выстрелов стабильность темпа стрельбы поддерживается с помощью демпфирования излишней скорости вращения кривошипа путем подбора покрытия контактирующих поверхностей в паре затвор-направляющие ствольной коробки, обладающего нелинейным коэффициентом трения скольжения, увеличивающимся при росте нагрузки. Необходимо отметить, что в первом случае при реверсировании вращения кривошипа возникает реактивный момент, действующий в продольной плоскости и ухудшающий импульсную диаграмму оружия.

Модели оружия с кривошипно-шатунным механизмом перезаряжания.

Первым образцом автоматического оружия с кривошипно-шатунным механизмом перезаряжания является пулемет австро-венгерского конструктора Андреаса Шварцлозе M.07/12 под патрон калибра 8х56 мм, выпускавшийся большими сериями в различных модификациях с 1905 по 1939 год. Автоматика не была сбалансирована и работала в ударном режиме.

В составе механизма отсутствовал балансир, кривошип двигался в том же направлении, что и затвор. Недостаточная масса кривошипа и удаленность точки производства выстрелов от верхней мертвой точки привели к необходимости сокращения дульной энергии путем уменьшения длины ствола, а также смазывания маслом патронов перед выстрелом и увеличения массы затвора.

Вес пулемета 20,7 кг, длина ствола 530 мм, темп стрельбы 600-880 выстрелов в минуту в варианте без увеличения массы затвора. Схема работы автоматики пулемета представлена на (рисунке stat-avto-01). Простота конструкции и надежность работы механизма перезаряжания пулемета определили его постановку на вооружение в армиях многих европейских государств.

Вторым образцом автоматического оружия с кривошипно-шатунным механизмом перезаряжания является опытный пулемет советского конструктора Юрченко под патрон калибра 7,62х54 мм, разработанный в 1930-х годах на Ковровском механическом заводе. Автоматика была сбалансированной и работала в безударном режиме. В состав механизма перезаряжания входил двойной кривошип, связанный с шатуном единой шейкой и совершающий оборот на 350 градусов между двумя точками производства выстрелов, каждая из которых отстояла от верхней мертвой точки на 5 градусов. Выстрелы производились на выкате затвора с последующим реверсированием вращения кривошипа. В случае недостаточной энергетики метательного заряда, большой продолжительности срабатывания капсюля или осечки патрона затвор упирался в ствол, гарантируя стабильный темп стрельбы. При реверсировании вращения кривошипа на корпус оружия передавался реактивный момент. Темп стрельбы составлял 3600 выстрелов в минуту, что обусловило низкую живучесть ствола и механизма перезаряжания.

Советский конструктор Юрченко Юрий Федорович работал до 1941 года в конструкторском бюро Ковровского механического завода. Им было создано две опытные конструкции авиационных пулеметов с кривошипно-шатунным механизмом перезаряжания:

Пулемет Ю-7.62, был представлен на испытание в 1938 году в Ногинский Научно-исследовательский полигон авиационного вооружения ВВС красной армии, испытание не прошел из-за поломок деталей и был возвращен на доработку, был доработан, прошел испытания и поставлен в план на 1941 год по изготовлению первой опытной партии, изготовление было отложено в связи с переориентацией производственных мощностей завода на выпуск противотанковых ружей, изготовление пулемета не было вобновлено в связи с переходом авиации на пушечное вооружение калибров 23 и 30 мм;

Пулемет Ю-12.7, был представлен на испутание в 1939 году, темп стрельбы составил 2000 выстрелов в минуту, вес 24 кг (для сравнения серийный авиационный пулемет с газовым двигателем УБ-12,7 весил 21 кг при темпе стрельбы 1000 выстрелов в минуту), на был принят на вооружение по причине поперечного габарита, большего чем у конкурентной конструкции, профиль пулемета напоминал гитару (гриф - ствол, первое утолщение - приемник патронов, второе утолщение - кривошип).

Третьим образцом автоматического оружия с механизмом перезаряжания, близким по конструкции к кривошипно-шатунному, является опытный пулемет немецкого конструктора Виктора Барнитцке под патрон калибра 7,92х57 мм (Late War Barnitzke experimental flywheel MG), разработанный в 1942 году на фирме Gustloff-Werke. Автоматика была сбалансированной, механизм перезаряжания работал в безударном режиме. В состав механизма перезаряжания входили два маховика, вращающиеся в противоположных направлениях. Привод маховиков осуществлялся с помощью реечно-шестеренчатой передачи. В связи с быстрым выкрашиванием зубьев передачи пулемет не был принят на вооружение.

Четвертым образцом автоматического оружия с кривошипно-шатунным механизмом перезаряжания является авиационная пушка АО-7 (ТКБ-513) под патрон калибра 23х115 мм советских конструкторов В.П.Грязева, А.Г.Шипунова и Д.Ф.Ширяева, разработанная в 1953 году в Подольском НИИ-61 и доведенная до стадии серийного производства в 1958 году в Тульском ЦКБ-14. Автоматика была сбалансированной и работала в безударном режиме. Конструкция механизма перезаряжания, способ производства выстрелов и импульсная диаграмма соответствовали пулемету Юрченко. Темп стрельбы составлял 2300 выстрелов минуту. Кинематика механизма перезаряжания обеспечивала минимальные ускорения в процессах досылания патронов в ствол и извлечения стреляных гильз.

Пятым образцом автоматического оружия с механизмом перезаряжания, близким по конструкции к кривошипно-шатунному, является пистолет-пулемет MGD/ERMA PM9 под патрон калибра 9х19 мм французского конструктора Луи Дебюи, разработанный на фирме Etablissements Merlin & Gerin и выпускавшийся малыми сериями в 1954-55 годах французской компанией MGD и немецкой компанией ERMA.

Пистолет-пулемет MGD PM-9 использовал автоматику с полусвободным затвором; замедление открытия затвора осуществлялось благодаря взаимодействию легкого затвора и вращающегося маховика, связанного со спиральной возвратной пружиной.

В процессе отката затвора маховик проворачивался примерно на 180° назад, а затем в обратную сторону, возвращая затвор вперед и досылая в ствол новый патрон.

Стрельба велась с открытого затвора, режимы огня - одиночные выстрелы и автоматический огонь. Переводчик-предохранитель расположен слева на ствольной коробке, над спусковой скобой. Рукоятка взведения затвора расположена справа, и для взведения оружия проворачивается вверх и назад.

Приклад металлический, складной вбок. Приемник магазинов также складной вперед; используются штатные магазины от германских пистолетов-пулеметов МР.38 и МР.40.

Автоматика была несбалансированной и работала в ударном режиме. Единственный кривошип, расположенный ассиметрично в ствольной коробке, приводится во вращение с помощью кулисной передачи. Возвратная пружина кручения была размещена во внутренней полости кривошипа.

При реверсировании вращения кривошипа в крайних положениях затвора на корпус оружия передавался реактивный момент. Вес пистолета-пулемета 2,53 кг, длина ствола 213 мм, масса кривошипно-кулисного механизма 630 грамм, темп стрельбы 750 выстрелов в минуту. В связи с отсутствием спроса производство пистолета-пулемета было прекращено.

Шестым образцом автоматического оружия с кривошипно-шатунным механизмом перезаряжания является опытный пистолет-пулемет немецкого конструктора Анатоля Гёрцена под патрон калибра 9х19 мм, разработанный в инициативном порядке в 1990-х годах. Автоматика является сбалансированной и работает в безударном режиме. Конструкция механизма перезаряжания, способ производства выстрелов и импульсная диаграмма соответствуют пулемету Юрченко. Особенностью механизма перезаряжания является работа возвратной пружины, которая после производства первого выстрела отключается от затвора, после этого аккумулирование энергии отдачи осуществляется лишь за счет реверсирования и прироста скорости вращения кривошипа. Внешний вид пистолета-пулемета представлен на рисунке 4. Все пистолета-пулемета 2,4 кг, общая масса затвора, шатуна и кривошипа 230 грамм, длина ствола 230 мм, длина шатуна 56 мм, диаметр кривошипа 54 мм, радиус вращения кривошипа 20 мм, темп стрельбы свыше 2000 выстрелов в минуту. Высокий темп стрельбы, неприемлемый для индивидуального автоматического оружия, обусловлен заниженной массой кривошипа, отказом от использования возвратной пружины во время стрельбы и большой удаленностью точки производства выстрелов от верхней мертвой точки вращения кривошипа.

Оружие Анатоля Гёрцена с кривошипно-шатунным механизмом перезаряжания было разработано в двух модификациях:

Пистолет-пулемет с коротким стволом, выполненный по схеме буллпап с размещением магазина за рукояткой управления.
- карабин с длинным стволом, выполненый по схеме с размещением магазина в пистолетной рукоятке

Развитие оружия с кривошипно-шатунным механизмом перезаряжания.

Лучшие образцы автоматического оружия, оснащенные кривошипно-шатунным или сходным с ним по конструкции механизмом перезаряжания, отличаются сбалансированной автоматикой, работающей в безударном режиме. Однако всем им, за исключением пулемета Барнитцке, свойственен один недостаток - при реверсировании вращения кривошипа возникает реактивный момент, подбрасывающий или опрокидывающий ствол оружия. Этот недостаток, приемлемый в пулеметах, ведущих огонь с упора, сводит на нет все преимущества применения кривошипно-шатунного механизма перезаряжания в индивидуальном автоматическом оружии, удерживаемом на весу во время ведения огня. В связи с этим необходимо осуществить переход от одного кривошипа к двум, вращающимся в противоположных направлениях и связанных с затвором отдельными шатунами. Реактивные моменты от реверсирования вращения пары кривошипов будут взаимно компенсировать друг друга.

Следующий недостаток известных конструкций кривошипно-шатунного механизма перезаряжания связан с общей проблемой применения полусвободного затвора - нестабильностью темпа стрельбы, зависящей от момента производства выстрелов на выкате и обусловленной эксплуатационным разбросом энергетики метательных зарядов и продолжительности срабатывания капсюлей патронов. Упор затвора в ствол в случае превышения энергии предыдущего выстрела над энергией последующего является компромиссным решением - при этом возникает случайный импульс, действующий в направлении, противоположном постоянно действующему импульсу отдачи, и тем самым сбивающий оружие с линии прицеливания. Принципиальным решением является применение альтернативного варианта производства выстрелов - после перехода кривошипа через верхнюю мертвую точку. В этом случае изменение энергетики выстрелов будет связано прямо пропорционально с изменением вертикальной составляющей вектора силы отдачи, в свою очередь определяющей силу трения в паре затвор-направляющие ствольной коробки.

Применение специального покрытия контактирующих поверхностей направляющих ствольной коробки с нелинейным изменением величины коэффициента трения скольжения в зависимости от величины вертикальной составляющей вектора силы отдачи позволит поддерживать темп стрельбы в заданных пределах без ухудшения импульсной диаграммы оружия. В качестве подобного покрытия может использоваться композитный материал на основе полиамидного связующего и графитной основы, применяемый в машиностроении для покрытия направляющих суппортов станков с целью демпфирования скорости их перемещения в процессе обработки деталей, а также в двигателестроении в качестве покрытия юбок поршней цилиндров. Кроме демпфирования движения затвора и связанного с ним кривошипа композитный материал позволит на порядок снизить посадочные допуски, устранить люфты и исключить заклинивание в паре затвор-направляющие ствольной коробки. Люфты в осевом шарнире кривошипа и осях вращения шатунов должны отсутствовать при посадке деталей в натяг. В результате с очень большой точностью будет обеспечено выдерживание угла поворота кривошипа в момент производства выстрелов, что положительно отразится на импульсной диаграмме оружия.

Последний недостаток известных конструкций кривошипно-шатунного механизма перезаряжания связан с другой общей проблемой применения полусвободного затвора - движение назад стреляной гильзы в патроннике проходит на пике давления газов в стволе.

Давление газов прижимает стенки гильзы к поверхности патронника. Возникающая при этом сила трения может превысить силу давления газов на дно гильзы, в результате чего произойдет её заклинивание в стволе. В случае превышения силы давления газов на дно гильзы над её прочностью на растяжение гильзу разорвет на части. Известны следующие способы уменьшения трения гильзы о поверхность патронника:
- смазывание патронов маслом перед выстрелом;
- снижение дульной энергии за счет уменьшения длины ствола;
- нанесение продольных канавок на поверхность патронника.

Первый способ неприемлем для современного автоматического оружия. Второй способ существенно снижает дистанцию стрельбы из оружия с полусвободным затвором. Третий способ характеризуется нестабильностью эффекта уменьшения трения гильзы в патроннике из-за прогрессирующего загрязнения канавок пороховым нагаром. В связи с этим в оружии с полусвободным затвором рекомендуется использовать новый способ уменьшения трения гильзы в патроннике - в заводских условиях наносить на поверхность гильзы антифрикционное покрытие на основе тефлона и графита. Подобное покрытие толщиной от одного до двух десятков микрон обладает большой стойкостью к механическому износу и высокой температуре, под действием давления пластифицирует поверхность патронника, доводя коэффициент трения до величины 0,02. Покрытие не загрязняет ствол - в случае нагрева свыше 300 градусов Цельсия продукты распада тефлона непосредственно переходят из твердого в газообразное состояние, графит сгорает в процессе выстрела. В перспективе возможно применение безгильзовых патронов и патронов с пластиковой гильзой по типу боеприпасов, испытываемых в рамках программы LSAT, без опасности их самовозгорания в стволе - осечный патрон будет гарантировано извлекаться из ствола за счет энергии вращающегося кривошипа.

Проект кривошипно-шатунного механизма перезаряжания.

Предлагается вниманию проект кривошипно-шатунного механизма перезаряжания, основанный на вышеназванных подходах к устранению недостатков известных конструкций. Весь механизм перезаряжания размещен в пределах ствольной коробки. Свободно вывешенный ствол установлен в муфте передней стенки ствольной коробки. По обе стороны от муфты ствола расположены две муфты меньшего диаметра для прохода толкателей, соединенных с рукоятками перезаряжания оружия. Ударно-спусковой механизм расположен на дне ствольной коробки. Горловина магазина и окно выброса стреляных гильз расположены соответственно в дне и крышке ствольной коробки. Схема механизма перезаряжания представлена на рисунке. В состав механизма перезаряжания входят два кривошипа, каждый из которых расположен внутри своего осевого шарнира. Осевые шарниры расположены симметрично в кольцевых выступах боковых стенок ствольной коробки. Кривошипы состоят из неподвижно закрепленных балансиров и съемных осей вращения шатунов. Шатуны, работающие на сжатие и изгиб, выполнены в виде балок Н-образного профиля, на концах которых размещены муфты осей вращения шатунов.

Конструкция затвора включает:
- зеркало затвора, расположенное на переднем торце затвора;
- канал ударника, выполненный в теле затвора;
- пружинный выбрасыватель, расположенный сверху затвора;
- несъемные полые оси вращения шатунов, расположенные на заднем выступе затвора по обе стороны от канала ударника;
- две пары продольных пазов, выполненных на боковых поверхностях затвора и контактирующих с направляющими ствольной коробки;
- съемные замки, соединяющие между собой затвор и толкатели.

Зеркало затвора в его крайнем переднем положении доходит до казенного среза ствола, в патроннике которого выполнен паз для входа выбрасывателя на глубину, равную величине выхода гильзы под действием давления газов. В полых осях вращения шатунов расположены пружины кручения, завитые в противоположных направлениях. Пружины кручения нагружают шатуны статическими крутящими моментами и обеспечивают синхронизацию вращения кривошипов в противоположных направлениях. На каждой из боковых стенок ствольной коробки расположены по два продольных выступа, служащие направляющими затвора. Между продольными выступами расположены две возвратные пружины, опирающиеся одним концом на замки и другим концом на кольцевые выступы ствольной коробки. Кривошипы вместе с осевыми шарнирами запрессовываются в кольцевые выступы ствольной коробки. Остальные детали механизма перезаряжания разбираются в следующем порядке. После снятия крышки ствольной коробки затвор отсоединяется от замков и отводится в среднее положение. Из кривошипов вынимаются съемные оси вращения шатунов, шатуны поднимаются вверх. Затвор выводится из направляющих, перемещается в полость между кривошипами и извлекается вместе с шатунами из ствольной коробки. Шатуны вместе с крутильными пружинами снимаются с осей вращения, расположенных на затворе. В завершение из ствольной коробки извлекаются возвратные пружины, замки и толкатели. Сборка деталей механизма перезаряжания осуществляется в обратном порядке.

Массо-габаритные характеристики механизма перезаряжания, предназначенного для применения в штурмовой винтовке под патрон калибра 5,56х45, оцениваются следующими величинами. Диаметр одного кривошипа по внутреннему кольцу осевого шарнира 80 мм, радиус вращения шатунов 30 мм, диаметр осей вращения шатунов 10 мм, длина шатунов 90 мм, длина затвора 40 мм, выбег затвора 60 мм, Общий вес 600 грамм. Вес одного кривошипа 200 грамм, в том числе вес балансира 100 грамм. Вес одного шатуна 50 грамм, вес затвора 100 грамм. Сила упругости одной возвратной пружины 1 кгс. Размеры ствольной коробки - длина 200 мм, ширина 40 мм, высота 100 мм. С целью обеспечения плотной посадки затвора в направляющих ствольной коробки и демпфирования скорости вращения кривошипа поверхности направляющих покрыты композитным материалом на основе полиамида и графита. Точка производства выстрелов отстоит на 2 градуса от верхней мертвой точки вращения кривошипа. Темп стрельбы оценивается на уровне 600 выстрелов в минуту. В случае размещения магазина вверху ствольной коробки по типу пистолета-пулемета FN P90 или штурмовой винтовки HK G11 возможна компоновка кривошипно-шатунного механизма перезаряжания непосредственно в прикладе оружия, выполненного по схеме буллпап.

Заключение

Применение кривошипно-шатунного механизма в конструкции пистолетов-пулеметов и штурмовых винтовок позволит:
- обеспечить однонаправленный вектор движения оружия в пределах одной очереди для уверенного удержания прицела в выбранном направлении;
- существенно упростить конструкцию индивидуального автоматического оружия за счет отказа от подвижного ствола или газового двигателя;
- расширить состав применяемых боеприпасов за счет безгильзовых патронов и патронов с пластиковой гильзой.

АВТОМАТИЧЕСКОЕ ОРУЖИЕ , оружие, в котором развиваемое при выстреле давление пороховых газов утилизируется не только для выбрасывания пули, но и для перезаряжания, т. е. для открывания затвора, выбрасывания гильзы, взведения боевой пружины, введения нового патрона в патронник и закрывания затвора; при этом стреляющий должен только прицеливаться, нажимать на спусковой крючок и наполнять магазин новыми патронами. Первая идея о таком оружии возникла более 70 лет тому назад. В 1854 г. Генрих Бессемер взял патент на заряжаемую с казны пушку, снабженную унитарным патроном, затвор которой открывался после выстрела автоматически, давлением пороховых газов. Первый проект автоматического ружья появился в 1863 г., когда американец Регул Пилон взял патент на ружье со скользящим назад после выстрела затвором, который затем взведенной отдачей пружиной вновь продвигался вперед в свое первоначальное положение. В 1866 г. английский инженер Жозеф Куртис построил автоматическое многозарядное ружье с вращающимся барабанным магазином; отдача при выстреле, вместе с работой сжимаемых отдачей пружин, производила автоматическое открывание, заряжание и закрывание затвора. Первое практическое применение как автоматическое оружие имела изобретенная в 1883 г. Максимом автоматическая пушка, которая была введена на вооружение в некоторых армиях; затем разработка автоматического оружия сделала значительные успехи лишь в конце прошлого столетия, когда был сконструирован пулемет Максима; громадное боевое значение его подтвердилось опытом войн: англо-бурской и русско-японской. С тех пор во всех государствах стали вестись энергичные опыты по разработке автоматического оружия. В настоящее время, после опыта мировой войны, автоматическое оружие в виде пулеметов станковых и ручных, автоматов, автоматических винтовок и пушек стало постепенно вытеснять прежнее вооружение.

Классификация автоматического оружия, разработанная В. Федоровым, может быть представлена в следующем виде.

I. Действие давления пороховых газов через дно гильзы на затвор, использование отдачи.

1. Отдача затвора. Системы с неподвижным стволом, работающие непосредственным давлением пороховых газов на затвор.

А. Системы без сцепления затвора . Автопистолет Браунинга: затвор прилегает к заднему обрезу лишь под давлением спиральной пружины, упирающейся одним концом в неподвижный каркас пистолета, а другим в особую трубку, соединенную с подвижным кожухом; при выстреле давление пороховых газов через дно гильзы отбрасывает затвор назад, происходит экстрактирование гильзы, взведение курка и сжимание пружины, которая возвращает кожух в первоначальное положение; эта система применима г. о. для образцов оружия с небольшим давлением пороховых газов, а также с короткими стволами, где пуля быстро покидает ствол; главная выгода их - простота устройства.

Б. Системы с вкладышем, задерживающим отбрасывание затвора . Система Томсона : стремление несколько задержать отбрасывание затвора для того, чтобы его открывание могло произойти лишь в тот момент, когда пуля покинет канал ствола, имело следствием появление образцов оружия с различными задерживающими затвор приспособлениями, основанными на трении; в системе Томсона между затвором и опорной плоскостью коробки помещается бронзовый вкладыш, выдвижение которого при выстреле вверх под действием давления газов через дно гильзы на обрез затвора и задерживает его отбрасывание назад (фиг. 1).

В. Системы с сцеплением затвора , чтобы задержать быстрое открывание ствола, делятся на две подгруппы: а) С сцеплением с помощью боковых выступов (винтовка Манлихера): затвор сцеплен со ствольной коробкой с помощью боевых выступов, входящих при повороте в кольцевой паз на ствольной коробке, подобно сцеплению в 3-лин. винтовке обр. 1891 г., с тем лишь отличием, что эти пазы делаются наклонными; благодаря такому устройству, при выстреле, под действием давления пороховых газов на затвор, происходит самооткрывание затвора со скольжением боевых выступов по наклонным пазам коробки (скольжение и задерживает несколько отбрасывание затвора при выстреле). б) С рычажным сцеплением (пулемет Шварцлозе, фиг. 2 и 3):

ствол закрыт затвором ДД, сцепленным с коробкой, в которой он движется, в месте А при помощи двух шарнирных тяг АВ и БВ; давление пороховых газов через дно гильзы на затвор стремится отбросить его назад; т. к. ось шарнира А соединена с неподвижным коробом пулемета, то одновременно с движением затвора начинается разворачивание тяг; сжатая возвратная пружина возвращает затем затвор в первоначальное положение.

Из всех описанных выше задерживающих приспособлений, наличие шарнирных тяг в пулемете Шварцлозе представляет наиболее действительное средство. Системы с неподвижным стволом, имеющие сцепление затвора, обладают тем существенным недостатком, что несмотря на более медленное открывание затвора, гарантирующее безопасность стрельбы, открывание в них начинается одновременно с движением пули по каналу, т. е. еще тогда, когда в патроннике имеется некоторое давление, причем экстракция гильз в этих системах значительно затруднена. Это обстоятельство вызывает необходимость предварительной смазки патронов, иначе возможны случаи неэкстрактирования гильз: как пулемет Шварцлозе, так и винтовка Манлихера стреляют только смазанными патронами. Для устранения этих недостатков пришлось отказаться от весьма большого преимущества конструкций автоматического оружия, а именно - неподвижности ствола, и обратиться к конструированию систем с подвижными стволами, где ствол, ствольная коробка и затвор двигаются совместно, пока пуля не покинет конец ствола.

2. Отдача затвора со стволом. Системы, работающие отдачей подвижного ствола.

А. Системы с коротким ходом ствола . 1) Система с прямым движением затвора , а) Сцепление защелками в горизонтальной плоскости. Система Маузера (фиг. 4):

система имеет подвижной ствол; сцепление затвора со стволом достигается помощью двух симметрично расположенных вращающихся защелок аб , задние выступы которых входят в соответствующие выемки затвора; при выстреле давление пороховых газов на дно гильзы отбрасывает затвор назад, а так как последний помощью защелок аб сцеплен со ствольной коробкой, то все подвижные части двигаются совместно назад, причем сжимается возвратная спиральная пружина; это совместное движение продолжается до тех пор, пока передние концы защелок аб не коснутся особых скосов неподвижной покрышки вв , соединенной с коробом системы; это скольжение по скосу произведет вращение личинок и расцепление затвора от ствольной коробки; по освобождении затвор по инерции будет продолжать свое движение назад, сжимая возвратную пружину и производя все действия, необходимые для перезаряжания. б) Сцепление защелками в вертикальной плоскости. Система Федорова (фиг. 5, Б, А и В):

ствол подвижной, имеющий свою возвратную пружину; сцепление затвора со стволом достигается с помощью двух личинок аб , симметрично расположенных в вертикальной плоскости; эти личинки в передней своей части имеют круглые выступы а , входящие в соответствующие круглые же выемки на боковых поверхностях ствола; благодаря этим выступам личинки могут вращаться, как это видно из чертежей; на задних своих оконечностях личинки имеют загнутые вверх выступы б , удерживающие выступающие цапфы затвора в ; при выстреле давление газов на затвор стремится отбросить его назад, а т. к. он сцеплен со стволом помощью личинок, то все подвижные части - ствол, личинки, затвор - приходят в движение назад; это совместное движение происходит до тех пор, пока особые крючки личинок г , находящиеся на нижних их плоскостях, не упрутся о неподвижные уступы д коробки системы, произведя вращение личинок и расцепление затвора от ствола, как это видно из фиг. 5, В; под влиянием приобретенной живой силы затвор продолжает свое движение, сжимая возвратную пружину. Система Маузера (фиг. 6а и 6б):

сцепление затвора со ствольной коробкой достигается с помощью одной личинки аб , расположенной в вертикальной плоскости; личинки могут вращаться около оси а , проходящей через подвижную при выстреле ствольную коробку, как это видно из сравнения двух фиг.; сцепление производится с помощью двух выступов дд , проходящих через отверстие ствольной коробки в соответствующие выемки затвора; нижний носик личинки в опирается при этом на скос а неподвижного короба системы; при выстреле давление пороховых газов отбрасывает затвор; т. к. затвор сцеплен личинкой со ствольной коробкой, то эта последняя вместе с ввинченным в нее стволом двигается назад; это происходит до тех пор, пока носик личинки в , скользя по наклонному скосу г , не упрется в уступ неподвижного короба; при этом движении произойдет вращение личинки и расцепление затвора от ствола; под влиянием приобретенной живой силы затвор будет продолжать свое движение, сжимая затворную пружину. Подобное же сцепление нижней защелкой осуществлено и в системе Манлихера . в) Сцепление рычажное. Пулемет Максима (фиг. 7):

система имеет подвижной ствол, соединенный с двумя продольными пластинами особой рамы, между которыми помещается замок аб , запирающий ствол, мотыль в и шатун гд ; все три части соединены между собой шарнирами в , г , д , причем последний шарнир проходит через заднюю оконечность пластин рамы и соединен с шатуном неподвижно, т. е. так. обр., что если эта ось повернется, то должен повернуться и сам шатун; на эту ось с правой ее стороны насажена рукоятка еж , опирающаяся задним концом ж на ролик з ; к рукояти с помощью цепочки прикреплен задний конец спиральной пружины, работающей на растяжение, передний же ее конец прикреплен к неподвижному коробу системы.

При выстреле пороховые газы стремятся отбросить замок назад, но т. к. он соединен с помощью мотыля и шатуна с рамой пулемета посредством оси д , причем средняя ось г расположена несколько выше двух крайних осей д и в , прилегая в то же время сверху к особой стенке, - то первоначально эти части, т. е. мотыль, шатун и замок, сохраняют свое положение, которое они имели перед выстрелом, и отходят вместе назад, двигая за собой и раму, а следовательно и соединенный с ней ствол; это происходит до тех пор, пока рукоятка еж , сидящая на оси д , не надвинется на ролик з , как это показано на фиг.; вращение рукоятки вызовет, в свою очередь, вращение оси д , а следовательно и шатуна гд - все части придут в положение Б; замок при этом получит ускоренное по сравнению с рамой и стволом движение, он откроет ствол, и гильза будет выброшена из патронника; из крайнего положения подвижных частей растянутая возвратная пружина возвратит затем все части в первоначальное положение; так как подвижные части в этой системе очень массивны, то для увеличения силы, отбрасывающей их назад, к системе приспособлен надульник, идея действия которого заключается в том, что пороховые газы, выбрасываемые из ствола вслед за пулей, действуют на передний обрез дульного среза и увеличивают скорость отбрасывания назад ствола, рамы и других подвижных частей. Система Борхардт-Люгера (фиг. 8):

затвор аб сцеплен со ствольной коробкой вг с помощью двух шарнирных планок де и еж ; средний шарнир е расположен несколько ниже двух крайних; благодаря такому расположению, давление пороховых газов при выстреле отбрасывает затвор назад вместе с шарнирными планками и со ствольной коробкой; это совместное движение происходит до тех пор, пока ролики, сидящие на среднем шарнире е , не коснутся особой наклонной плоскости зз , разделанной на неподвижной коробке системы; скольжение роликов по наклонной плоскости вызовет свертывание шарниров и ускоренное движение затвора, причем стреляная гильза будет экстрактирована; при движении назад ствольной коробки сжимается особая возвратная пружина (не показанная на фиг.), которая возвращает затем подвижные части в первоначальное положение.

2) Системы с поворотом затвора . В первоначальных образцах автоматического оружия с подвижным при выстреле стволом некоторыми конструкторами применялись системы с поворотом затвора (Токарев, 1-го образца). Такие системы имели то существенное неудобство, что рукоятка затвора поворачивалась вверх перед глазом стрелка и затрудняла спокойное прицеливание; в настоящее время они не применяются.

3) Системы с перемещающимся в сторону затвором . Система Бергмана (фиг. 9, А и Б):

имеет подвижной ствол с особым отростком, выступ которого а входит в соответствующую выемку затвора бв ; затвор может несколько перемещаться в горизонтальной плоскости, отходя от выступа а вправо и тем расцепляясь от ствола; это перемещение происходит при выстреле под действием отдачи, когда подвижные части, ствол и затвор, отбрасываются давлением пороховых газов назад; при этом движении наклонная плоскость затвора г наскакивает на наклонную же плоскость д неподвижного короба, производя перемещение затвора вправо и освобождая его от ствола, причем дальнейшее движение сжимает возвратную пружину ж .

4) Системы с качающимся затвором . Система Мадсена (фиг. 10, А и Б):

ствол подвижной, ввинченный в ствольную коробку аб ; затвор вв , качающийся в вертикальной плоскости около оси г ; на затвор давит рычаг де ; под действием пружины ж особый шип затвора з , расположенный с правой его стороны, входит в паз кккк , простроганный в неподвижном коробе. При выстреле пороховые газы отбрасывают затвор назад, а вместе с ним и ствольную коробку, которая соединена с затвором осью г ; при этом сжимается возвратная пружина ж ; при движении затвора назад, вследствие скольжения его шипа з по наклонным и продольным пазам кккк , происходит качательное движение затвора в вертикальной плоскости, с открыванием ствола и выбрасыванием стреляной гильзы вниз.

Б. Системы с длинным ходом ствола . Кроме описанных выше систем с коротким откатом ствола, длина хода которого рассчитана лишь на время прохода пули по каналу ствола, имеются еще некоторые системы с длинным откатом, достигающим длины патрона. Системы эти отличаются большей громоздкостью и большим весом и в настоящее время уже признаются устаревшими.

3. Отдача всего оружия. Системы с неподвижным стволом, работающим отдачей всего оружия.

Системы с ползуном и отбрасыванием затвора остающимся давлением газов . Система Маузера : затвор представляет собою брусок, подпираемый сзади двумя симметрично расположенными личинками, упирающимися передними концами в задний обрез затвора, задними же в соответствующие края ствольной коробки; для возможности расцепления затвора необходимо развести эти личинки в стороны, причем затвор будет отброшен назад остающимся в патроннике давлением пороховых газов; при выстреле, при отдаче всей винтовки назад, ползун по инерции стремится остаться на месте, т. е. по отношению к винтовке получается движение ползуна вперед, которое, благодаря наличию наклонных пазов, и разводит личинки, освобождая затвор; отброшенный затвор сжимает как возвратную, так и боевую пружины. Для первого открывания затвора необходимо предварительное движение ползуна вперед для разведения личинок, а затем уже отведение затвора назад.

II. Действие частичного давления пороховых газов на специальные детали системы.

1. Системы с неподвижным стволом, работающие давлением пороховых газов, отводимых через поперечный канал в стволе.

А. Системы с поршнем, двигающим на всю длину затвора . Система Льюиса (фиг. 11):

при выстреле часть пороховых газов, следующих за пулей, устремляется через боковой канал А, разделанный в стенке ствола, в подствольную трубку ББ и отбрасывает двигающийся в ней поршень В; поршень представляет собой одно целое с зубчатой рейкой Т, зубцы которой сцеплены с зубчатым колесом Д; внутри колеса помещена пластинчатая пружина Е, работающая на кручение; на задней конечности рейки Г сверху помещен ударник Ж; ударник входит через наклонный паз ИИ в затвор 33,представляющий собой цилиндрический брусок и имеющий боевые выступы КК, заходящие при повороте затвора в соответствующие выемки в коробке пулемета; отбрасывание поршня назад через посредство отбрасываемой зубчатой рейки Г вызовет вращение зубчатого колеса Д и взведение пружины Е; кроме того, прямолинейность движения рейки с движением ударника, входящего в наклонный паз ИИ затвора 33, вызывает поворот затвора и выход его боевых выступов из выемок ствола - затвор расцепляется от коробки и отбрасывается назад под действием продолжающегося движения поршня; закрученная пружина Е возвращает рейку и затвор в первоначальное положение, причем движение ударника по наклонному пазу поворачивает затвор и сцепляет его с коробкой. Пулемет Гочкиса 1-го образца (фиг. 12):

пороховые газы, следующие за пулей, через канал аб поступают в особую газовую камору, в которой двигается поршень вв , производя его отбрасывание назад и сжатие спиральной возвратной пружины д ; сцепление его затвора в производится с помощью особой, могущей вращаться, планки ж ; эта планка ж передним концом шарнирно соединена с задней оконечностью затвора; задний конец планки входит в отверстие крючкообразного выступа, находящегося на задней оконечности поршня; особая боковая цапфа планки ж , кроме того, входит в наклонный паз зз , простроганный в неподвижном коробе пулемета, паз этот переходит затем в продольный; при выстреле затвор не м. б. отброшен, он сцеплен планкой ж с коробкой; открывание затвора может произойти лишь при движении поршня назад, когда крючкообразный выступ несколько отойдет назад, имея следствием: 1) выход заднего конца планки ж из отверстия, 2) вращение ее, благодаря наличию скоса кк поршня, и 3) расположение боковой ее цапфы на продолжении продольного паза зз ; при окончании этого первоначального, необходимого для расцепления, движения, выступ поршня м упирается в срез затвора и отбрасывает его назад, причем происходит дальнейшее сжатие возвратной пружины д ; для усиления действия газов объем газовой каморы может быть увеличен или уменьшен с помощью регулятора л .

Б. Системы с поршнем, производящие толчок, который отбрасывает затвор на всю длину . Пулемет Кольта (фиг. 13):

пороховые газы, следующие за пулей, устремляясь в боковой канал, отбрасывают шатун АБ назад (что можно видеть из сравнения 1-го и 2-го положений частей А и В); соединенный с шатуном мотыль ВГ приводит в движение направляющую планку ДЕ, двигающую затвор; последний представляет собой цилиндрический брусок, который имеет качательное движение в вертикальной плоскости; в положении перед выстрелом затвор имеет несколько наклонное положение, причем нижняя часть его заднего обреза упирается в особые боковые плоскости коробки ЛЛ, представляющие собою плечи отдачи, как это изображено на схематических рисунках сцепления затвора; когда планка ДЕ идет назад, особый болт 3, неподвижно вставленный в эту планку и входящий в овальную наклонную прорезь КК на нижнем выступе затвора Ж, скользя по прорези, поднимает заднюю оконечность затвора вверх, причем происходит расцепление затвора от плеч отдачи коробки; возвратные пружины, находящиеся в соответствующих трубках М, сжимаются и приводят затем все подвижные части в первоначальное положение.

Выгоды систем с отводом пороховых газов: 1) имея позднее открывание, т. е. в тот момент, когда пуля покинет канал ствола, можно в этих системах применять неподвижный ствол, что значительно упрощает систему и устраняет ряд задержек при стрельбе; 2) нет необходимости прибегать к предварительной смазке патронов для улучшения экстракции; 3) можно регулировать объём газовой каморы и силу отбрасывания поршня и затвора; 4) большой запас силы пороховых газов на случай функционирования при неблагоприятных условиях. Недостатки : 1) резкость движения отбрасываемых частей, вызываемая краткостью времени, в течение которого газы действуют на поршень (проход пулей расстояния от газоотводного отверстия до дульного среза); 2) возможность загрязнения подствольной трубки; этот недостаток в настоящее время исключен соответствующим устройством патрубка и поршня (в системе Гочкиса 2-го образца; в пулемете Кольта нет подствольной трубки с пригнанным в ней поршнем). Некоторое уменьшение начальной скорости, вследствие отвода части газов, на практике не имеет никакого значения.

В. Системы с поршнем, производящим только открывание затвора (но не отбрасывание) . Винтовка Чеи-Риготти ; отбрасывание затвора назад после его открывания производится остающимися в патроннике пороховыми газами.

2. Системы с неподвижным стволом, работающие давлением пороховых газов, производящих отбрасывание подвижного надульника.

Оружие с надульником является более сложным по сравнению с другими системами; резкое движение надульника вызывает, кроме того, весьма чувствительное сотрясение оружия, влияющее на меткость стрельбы; эти системы не получили большого распространения (пулемет Пюто, автоматическая винтовка Байга).

3. Системы с неподвижным стволом, работающие давлением пороховых газов, отводимых из патронника через канал особой гильзы.

Необходимость наличия особых патронов, более строгие требования к капсюлю, выполняющему роль обтюратора, а также затрудненная экстракция гильз, вследствие сравнительно раннего открывания, являются настолько большими недостатками, что система эта не получила распространения.

I II. Классификация автоматического оружия в отношении типов.

Переходя к классификации автоматического оружия, имеющегося в армиях различных государств, необходимо отметить следующие типы этого оружия: 1) автоматические пистолеты, 2) пистолеты-пулеметы, 3) самозарядные винтовки, 4) самострельные винтовки, 5) автоматы, 6) ручные пулеметы, 7) станковые пулеметы, 8) автоматические орудия.

1) Автоматический пистолет - оружие для самообороны на близких расстояниях, обладающее по сравнению с револьверами следующими выгодами: большая скорость перезаряжания (вставка магазина, наполненного патронами, в рукоять пистолета - взамен вкладывания патронов по одному в каморы барабана), несколько большая скорострельность, более выгодная для носки компактная форма оружия, без выступающего барабана. Некоторые образцы пистолетов с более сильными патронами и снабженные притом приставными прикладами могут вести огонь не только для самообороны на близкие расстояния, но и на более дальние (автоматический пистолет Маузера с приставной кобурой-прикладом имеет прицел до 1000 м).

2) Пистолеты-пулеметы - автоматические пистолеты, приспособленные для непрерывной стрельбы. Отличие от пистолетов: изменение спускового механизма с добавлением автоматического спуска и снабжение магазином с большим количеством патронов, около 50; оружие предназначено для стрельбы на близкие расстояния по массовым целям - при отражении атак, в самые решительные моменты боя, а также при занятии неприятельских позиций во время борьбы в окопах. Непрерывная стрельба из пистолетов, вследствие большого дрожания оружия, не может обладать хорошей меткостью, а потому она применяется на близких расстояниях, не свыше 300-400 м.

3 и 4) Самозарядные и самострельные винтовки . Самозарядной винтовкой называется такая, в которой для производства каждого одиночного выстрела требуется каждый раз нажатие на спуск, - в отличие от самострельной, где нажатие на спусковой крючок, благодаря наличию особого переводчика, вызывает ряд непрерывных выстрелов, до полного израсходования всех патронов магазина. Переводчик в самострельной винтовке дает возможность превращать ее в самозарядную для одиночной стрельбы. Как самозарядная, так и самострельная винтовки имеют постоянный магазин на 5 или на 10 патронов. Сведения, полученные из заграничных источников, показывают, что в настоящее время там отдают предпочтение самозарядной винтовке; самострельную же не считают возможным принимать на вооружение каждого бойца в виду следующих соображений: а) непрерывная стрельба без надлежащей подставки, без сошек, обладает значительно худшей меткостью по сравнению с одиночным огнем; б) каждый стрелок не м. б. снабжен большим числом патронов, достаточным для производства непрерывного огня.

5) Автомат . Автоматом называется такая самострельная винтовка, которая имеет, вместо постоянного, вставной магазин на большее (около 25) количество патронов; т. о. получается возможность вести непрерывный огонь, заряжая автомат вставными магазинами, наполненными патронами, т. е. приближаясь к стрельбе из пулемета. Автомат при вставке малого магазина, на 5 или на 10 патронов, превращается в самострельную винтовку, а благодаря наличию переводчика - и в самозарядную, ведущую одиночный огонь, причем, в случае применения автомата в виде самозарядной или самострельной винтовки, заряжание производится обыкновенным способом – с помощью обоймы. Так. обр. автомат является универсальным индивидуальным оружием. Имея вес одинаковый с весом винтовки, он может вести самую разнообразную стрельбу: одиночную - при заряжании из обоймы, до 25 выстрелов в мин., как самозарядная винтовка; непрерывную - при заряжании из обоймы, до 40 выстрелов в мин., как самострельная винтовка; одиночную - при заряжании вставными магазинами на 25 патронов, до 75 выстрелов в мин., и, наконец, непрерывную - при заряжании вставными магазинами на 25 патронов, до 150 выстрелов в мин. Непрерывная стрельба без упора никоим образом не м. б. разрешаема, т. к. слишком ясно, что такая стрельба не даст ничего, кроме напрасной траты патронов. Нормальным видом непрерывной стрельбы м. б. лишь стрельба с упора, очередями по 3-4 патрона. По сравнению с неавтоматической винтовкой, автоматическая обладает следующими выгодами : а) сохранение сил стрелка, взамен которого работу по перезаряжанию производят пороховые газы; б) ослабление отдачи, поглощаемой возвратными пружинами; в) увеличение скорострельности. По сравнению с неавтоматической винтовкой автомат, кроме того, имеет следующие выгоды: г) возможность превращать автомат в самозарядную винтовку для одиночной стрельбы и заряжания из обоймы с магазином на 10 патронов, а также в самострельную и обратно в автомат, - т. е. универсальность оружия; д) возможность, для отражения атак и при появлении крупных целей, обстреливать их непрерывным огнем и тем же производить сильный моральный эффект при неожиданном открытии пулеметного огня. Недостатки автоматических винтовок: а) значительный расход патронов, которого требует это оружие по сравнению с неавтоматическим; б) большая сложность конструкции, несколько усложняющая обучение каждого стрелка; в) необходимость более тщательного ухода за своим оружием.

6 и 7) Пулеметы ручные и пулеметы станковые . Задача пулемета - экономить пехоту, непосредственно заменяя собою значительное число стрелков и косвенно принимая на себя огонь противника. Станковый - назначается для выполнения задач, требующих дальности, мощности и точности огня, причем эти качества в станковом пулемете занимают первое место в ущерб его подвижности. Ручной пулемет выполняет те же задачи, но при непременном условии сохранения за оружием хорошей подвижности, хотя бы в ущерб дальности, мощности и точности. От станкового - требуется стрельба с предельных дистанций до 3000 м, для ручного же предельная дальность не превосходит 1200 м. Для станковых пулеметов необходима надежная твердая установка - для возможности безопасной стрельбы через головы своих и для лучшей меткости; необходимы, следовательно, станок или тренога достаточной массивности во избежание дрожания. Вес всей системы позиционного пулемета, доходящий в крайнем случае до 80 кг, допускает конструкцию такого станка и треноги - с хорошими механизмами для вертикальной и горизонтальной наводки. Ручной пулемет, ограниченный пределами веса от 8 до 12 кг, допускает возможность иметь гл. обр. сошки или самые легкие станки. Следующими характерными данными являются система охлаждения и способ питания патронами. Для ручного пулемета водяное охлаждение не может считаться удобным, в виду трудности получения воды в бою при быстрых перебежках, - предпочтительнее охлаждение воздушное с радиатором, по принципу Льюиса (по принципу быстрой смены разгоряченного ствола). При тяжелом радиаторе пулемет должен выдерживать не менее 800-1000 выстрелов, при быстрой смене стволов - каждый ствол не менее 300-400, иначе пулемет д. б. признан негодным. Станковые пулеметы могут иметь более совершенное водяное охлаждение. Наконец, в отношении способа питания, ручной пулемет не может иметь ленты (без коробки), т. к. при быстрых перебежках она будет болтаться и затруднять движение. Наиболее целесообразный способ питания для такого пулемета - обыкновенные или барабанные магазины, не менее как на 50 патронов и не более как на 100, во избежание трудности переноски очень тяжелых магазинов. Для станковых пулеметов предпочтительнее ленты металлические (из отдельных звеньев) и из холста, примерно от 100 до 250 патронов. Станковый пулемет допускает ведение более продолжительной непрерывной стрельбы, чем ручной, а потому способы питания и охлаждения должны быть более совершенны.

8) Автоматические орудия . Выгода их - увеличение скорострельности и уменьшение отдачи, поглощаемой сжимающимися пружинами и компрессорами. Главное применение их - зенитная стрельба при борьбе с воздушным флотом; сюда относятся орудия, обладающие полным автоматизмом: 37-мм пушка Максима-Норденфельда, 40-мм Виккерса. К орудиям с полным автоматизмом необходимо отнести и пехотные пушки системы Мак-Клена (орудия сопровождения). Из полуавтоматических орудий, в которых автоматически производится лишь открывание затвора, извлечение и выбрасывание гильзы, а также взвод ударника, остальное же - закрывание затвора и заряжание - производится прислугой орудия, необходимо отметить французские 37-мм пушки для бронемашин и танков.

Автоматическое оружие

Автоматическое оружие - в широком смысле, огнестрельное оружие, в котором все операции по перезаряжанию выполняются автоматически за счёт так или иначе организованного использования образующейся при выстреле энергии пороховых газов. Автоматическое оружие бывает одиночного (самозарядное) и непрерывного огня (самострельное) , а также серийного огня и автоматический пистолет», - таким образом, данный термин может считаться многозначным.

Механизированное автоматическое оружие - оружие, в котором все эти операции также осуществляются автоматически, но не за счёт части энергии пороховых газов, а за счёт внешнего источника энергии, например «гатлинг» .

Принципы действия автоматики

Отдача затвора

Действие автоматики основано на использовании отдачи затвора при неподвижном стволе. Различают два варианта:

  • Свободный затвор - отсутствует жесткое запирание канала ствола затвором. Затвор прижат к казенному срезу ствола возвратной пружиной . Откат затвора происходит за счет давления пороховых газов на донце гильзы, передаваемое затвору. Обычно применяется в оружии под патроны небольшой мощности - пистолетах (Browning M1900 , Walther PPK , ПМ , АПС), пистолетах-пулеметах (MP-18 , «Суоми» , ППШ , Uzi). С увеличением мощности патрона растёт масса затвора, что часто неприемлемо. Редкими примерами являются авиационная пушка MK 108 , а также автоматический гранатомет АГС-17 .
  • Полусвободный затвор - откат затвора на начальном участке искусственно замедляется тем или иным способом. Например, создается повышенное трение затвора в ствольной коробке (пистолет-пулемёт Томпсона); затвор выполняется в виде двух частей, из которых задняя, более массивная, движется быстрее передней (винтовка G-3); движение затвора тормозится давлением пороховых газов, отведенных из ствола (так называемый принцип Барницке, пистолет Heckler und Koch P-7) т. п.

Отдача ствола

Действие автоматики основано на использовании отдачи подвижного ствола. Во время выстрела затвор прочно сцеплен со стволом. Различают два варианта:

  • Длинный ход ствола - ход ствола равен ходу затвора. Перед выстрелом затвор и ствол жестко сцеплены и вместе откатываюся назад до крайнего заднего положения. В крайней точке отката затвор задерживается, а ствол возвращается в исходное, при этом извлекая гильзу. Только после возврата ствола затвор возвращается в переднее положение. Схема отличается большой массой подвижных частей и конструктивной сложностью, не позволяет развивать большой темп стрельбы , поэтому используется редко (известны ручной пулемёт Шоша , пистолеты Фроммера). ГОСТ 28653-90 определяет длинный ход ствола как откат ствола стрелкового оружия на расстояние, большее длины патрона.
  • Короткий ход ствола - ход ствола меньше хода затвора. Перед выстрелом затвор и ствол жестко сцеплены, и в момент выстрела под действием отдачи начинают откат как одно целое. Пройдя относительно небольшое расстояние, затвор и ствол разъединяются, затвор продолжает откат, а ствол либо остается на месте, либо возвращается в исходное положение с помощью собственной возвратной пружины. За время от начала отката до расцепления пуля успевает выйти за пределы ствола. Оружие на этом принципе может иметь достаточно простое устройство и быть компактным и легким, поэтому схема с коротким ходом ствола получила широкое распространение в пистолетах. ГОСТ 28653-90 определяет короткий ход ствола, как откат ствола стрелкового оружия на расстояние, меньшее длины патрона.

Отвод пороховых газов

Действие автоматики основано на использовании отвода газов из канала ствола в газовую камеру через газоотводное отверстие в стенке неподвижного ствола. После прохода пулей газоотводного отверстия часть газов поступает в газовую камеру и приводит в движение поршень, связанный посредством штока с затворной рамой. Перемещаясь назад, затворная рама отпирает затвор и отбрасывает его в заднее положение.

Выделяют два основных варианта:

  • Длинный ход поршня - ход поршня равен ходу затворной рамы. Например Автомат Калашникова .
  • Короткий ход поршня - ход поршня меньше хода затворной рамы. Например снайперская винтовка СВД .

В широко распространённом автомате М16 используется оригинальная схема, когда пороховые газы по длинной газоотводной трубке воздействуют непосредственно на затворную раму. Газовый поршень как отдельная деталь отсутствует.

Примечания

См. также

Литература

  • Автоматическое оружие // Советская военная энциклопедия / под ред. А. А. Гречко . - М .: Воениздат , 1976. - Т. 1. - 637 с. - (в 8-ми т). - 105 000 экз.
  • Алферов В. В. Конструкция и расчет автоматического оружия. - М., Машиностроение, 1973
  • Материальная часть стрелкового оружия. Под ред. А. А. Благонравова. - М.: Оборонгиз НКАП, 1945
  • А. Б. Жук. Энциклопедия стрелкового оружия. - М.: Воениздат, 1998
  • Наставления по стрелковому делу. М.: Военное издательство Министерства обороны СССР, 1973
  • George M. Chinn. The Machine Gun. - U. S. Government Printing Office, 1951-1987
  • Lugs Jaroslav. Handfeuerwaffen. - Militaerverlag der DDR, Berlin, 1977

Ссылки


Wikimedia Foundation . 2010 .

Вооруженной двумя 30-мм автоматическими пушками (АП) 2А42, в СМИ и Интернете разразилась бурная дискуссия о целесообразности выбора калибра АП и необходимости его увеличения, причем не только для СВ, но и для флота.

За широкое, практически монопольное распространению у нас в СССР и России калибра АП в 30 мм нужно благодарить Аркадия Георгиевича Шипунова. Академик, доктор наук, руководитель и генеральный конструктор тульского КБП, Герой Соцтруда, лауреат множества Государственных, Ленинских, Правительственных и прочих премий, Аркадий Георгиевич в особых представлениях не нуждается. Талантливый «пушкарь», главным трудом жизни которого и является унификация 30-мм калибра для АП в авиации, Сухопутных войсках и на флоте.

В свое время это было весьма прогрессивное решение. Советские 30-мм боеприпасы и пушки, долгое время, как говорится, не имели аналогов. Но время, время, время… Время бежит быстро и прогресс не стоит на месте. Ну а, как известно, монополия в каком-либо деле прогрессу абсолютно не способствует. Более того, вредит. Со временем у 30-мм пушек начали проявляться недостатки, связанные с тем, что вероятные противники не сидели сложа руки, а интенсивно наращивали защиту своей БТТ, принимали на снабжение новую защитную экипировку для своих солдат.

Уже к середине 80-х годов XX века, стало ясно, что по крайней мере для СВ, требуется более мощное автоматическое орудие под более крупный боеприпас. Работа по созданию новой 45-мм автоматической пушки для разрабатываемых БМПТ и новых БМП была поручена КБП, и, разумеется, была успешно саботирована. Ибо, в противном случае, за что Аркадий Георгиевич нахватал орденов и званий?

Какие же недостатки нашлись у 30-мм АП и боеприпаса? Выяснилось, что при настильной стрельбе по малоразмерному объекту, находящемуся на поверхности земли, вероятность прямого попадания в площадь вертикальной проекции цели ничтожно мала. Основная масса снарядов рассеивается вокруг и попадает в грунт. Осколочное действие осколочно-фугасно-зажигательных снарядов само по себе является малоэффективным в силу малой массой заряда ВВ (48,5г), специфической конструкции снарядного корпуса и, как следствие, небольшим числом убойных осколков (примерно 300 штук с массой 0,25 г и более).

При ударном же подрыве в грунте осколочное действие катастрофически падает, поскольку исполнение ударного взрывателя не обеспечивает мгновенный разрыв снаряда на поверхности. В результате при стрельбе по грунту, особенно рыхлой структуры (пахоте, торфянику, песку), а также по снегу, к моменту разрыва происходит значительное углубление снаряда и, как следствие, перехват большей части осколков. В этих условиях могла бы помочь реализация траекторного (воздушного) разрыва снаряда над целью.

Однако выполнение траекторного взрывателя в калибре 30 мм при приемлемой стоимости тогда было практически нереально. Сейчас, с течением времени и развития технологий и элементной базы, это стало возможным, но все равно стоимость такого выстрела остается очень высокой. С бронепробиваемостью дела обстоят так же не самым лучшим образом. Самые современные российские 30-мм бронебойные подкалиберные снаряды «Кернер» и «Трезубка» созданные в ГНПП «Прибор» для поражения легко бронированных целей, мягко говоря, не вполне способны бороться с современными БМП и БТР с тяжелым бронированием. Эти обстоятельства и обуславливает в перспективе целесообразность перехода автоматического орудия на более крупный калибр (40-50 мм, а при определенных условиях и на 60-80 мм).

Наиболее отчаянным, твердым и последовательным сторонником этого направления является Владимир Алексеевич Одинцов. В свое время он очень активно отстаивал идеи увеличения калибра АП в прессе — журнале «Техника и вооружение», газете «Военно-промышленный курьер». Благодаря этим публикациям и жесткой дискуссии вокруг них, Владимир Алексеевич заработал в медиа-пространстве несколько неоднозначную репутацию раздражителя «океана спокойствия и благодушия». Кто бы, как бы не относился к публикациям Одинцова, тем не менее, учитывая послужной список этого человека, не обращать внимания на них невозможно. Тем более что тенденцию к увеличению калибра АП все более явно демонстрируют и на Западе.

Там первый прорыв на этом пути совершила фирма «Бофорс», запустившая в производство БМП CV-9040 с 40-мм пушкой L70. В Великобритании происходит модернизация боевой машины пехоты «Уорриор» путем замены 30-мм орудия RARDEN 40-мм пушкой CTWS с телескопическим патроном. Интенсивную разработку 40-мм пушек для БМП ведут фирмы «Эллайент Тексистемз» (США), GIAT (Франция), «Боинг» (бикалиберная пушка МК 40 30/40 мм, «Бушмастер II» и 40-мм пушка «Бушмастер IV»).

Стремясь увеличить калибр орудия, конструкторы сталкиваются с массой очевидных трудностей. Например, установка нового вооружения может затрудняться жесткими ТЗ по габаритам и массе башни и диаметру ее погона, объемам под размещения боекомплекта. Одним из изящных путей решения данных проблем, является внедрение принципиально нового боеприпаса. Так называемого «телескопического патрона» .

В них, в отличие от обычных, снаряд размещается внутри гильзы, стенки которой выполнены из метательного взрывчатого вещества. В настоящее время известны «телескопические» патроны двух типов:

— в первом метательное взрывчатое вещество располагается в пространстве, ограниченном стенкой гильзы и пластиковой втулкой, которая служит направляющей для снаряда. После срабатывания капсюля инициируется заряд взрывчатого вещества, и снаряд, двигаясь в направляющей втулке, высвобождает четыре отверстия в ее донной части, через которые в заснарядное пространство поступают пороховые газы;

— в патроне второго типа в качестве направляющей для снаряда используется отформованное взрывчатое вещество. Внешне такие патроны напоминают пивную банку. Их использование намного эффективнее обычных боеприпасов.

Телескопические выстрелы компактные, при равных прочих, они могут вмещать в себя больше пороха, удобнее и компактнее в укладке, что способствует увеличению возимого боекомплекта.

40х255-мм телескопический выстрел, сердечник и пробитый им стальной блок

С другой стороны, новые телескопические выстрелы требуют принципиально иных орудий . Пушка под них устроена особым образом: подача выстрелов, равно как и извлечение гильз, осуществляется сбоку с помощью вращающегося барабана. Барабан находится на оси цапф, так что не перемещается при поднятии/опускании орудия. Механизм обладает низким риском отказов питания и является очень компактным. Некоторые утверждают, что боковая подача боеприпасов приводит к сложности стабилизации орудия, отмечают низкий запас прочности пушки и указывают на дороговизну боеприпасов.

Но, в данном случае, дороговизна оправдывается большим калибром и, следовательно, меньшим расходом выстрелов для уничтожения противника. Кроме того дороговизна эта во многом мнимая. В случае выпуска массовых серий, стоимость таких выстрелов будет не намного дороже «классических» 30-и миллиметровых.

Однако все так просто и легко выглядит только на словах да на бумаге. На практике работа по телескопическим выстрелам, отработке системы пушка-боеприпас, например в США, идет с середины 1970-х годов и только совсем недавно был разработан 40-мм телескопический патрон для модернизированной бывшей 30-мм пушки Bushmaster II. Боеприпас имеет утопленный вглубь гильзы сердечник и по длине равняется 173 мм (как и калибр 30х173-мм). Для его применения американцы не стали делать совершенно новую пушку. Вместо этого они просто серьезно изменили конструкцию исходного орудия.

40-мм автоматическая пушка CTWS с телескопическим выстрелом, которой сейчас модернизируют британских «Воинов» рождалась так же довольно долго и мучительно. CTWS — Cased Telescoped Weapon System — этот проект курируется CTA International, объединением Nexter (прежний GIAT) и British Aerospace (в равных долях).

Используемые боеприпасы являются очень короткими, их калибр составляет 40х255-мм. Однако, бронепробиваемость подобных снарядов соизмерима с «классическими» снарядами 40-мм пушки Bofors или 50-мм (во всех 3 случаях используется сходный состав метательного заряда). Первые детали исследований в этом направлении были опубликованы в издании «Jane,s Armour and Artillery Upgrades» за 1995-1996 годы.

CTA International включает дочерние компании во Франции и Великобритании, а они, в свою очередь, работают в тесном сотрудничестве с Оборонным Агентством Вычислений и Исследований (DERA) в Англии и с Управлением наземных систем и информации (DSTI) во Франции. Первая демонстрационная версия пушки CTWS была закончена в 1991 году, а прототип построен в следующем году.




Пушка CTWS и боеприпасы к ней

Решение о модернизации «Уорриоров» с установкой пушки CTWS состоялось только к середине 2000-х годов. С 2007 года проводился конкурс и отбор претендентов на изготовление башни под эту пушку. Первый контракт был оформлен лишь в прошлом, 2011 году. Кроме того, пушка CTWS сейчас планируется в качестве вооружения и новых французских легких боевых машин. Как видно, это новое направление оказалось весьма сложным, но в тоже время и весьма перспективным делом.

Ну, а что же у нас в России? Оказывается у нас тут не все так плохо. С уходом со сцены А.Г.Шипунова, и усиления внимания Правительства РФ к обороноспособности, открылись возможности для реализации новых перспективных идей и у нас. Не то прислушались к «воплям» Одинцова, не то к «голосу разума», но так или иначе, и в России наконец-то началась разработка автоматов увеличенного калибра.

В годы Великой Отечественной войны очень хорошо показала себя 45-мм противотанковая пушка. Еще тогда, в 1941-43гг были идеи сделать на ее базе автоматическую пушку в т.ч. для вооружения танков. С тех пор этот калибр стал как бы привычным для нас. Под него и стали делать новую систему. Кто является разработчиком пушки и телескопических боеприпасов к ней — врать не стану — не знаю. Не буду и гадать-предполагать. Информации по ней, в силу естественных причин, крайне мало, еще меньше изображений. Первая картинка «засветилась» как иллюстрация в патенте «Курганмашзавода».



На ней был изображен один из ранних вариантов перспективной БМП, ставшей сейчас известной как «Курганец-25». Еще кое-что удалось выудить из открытой презентации для ВДВ, благодаря чему стали известны некоторые ТТХ.








Тактико-технические характеристики:

Пушка – автоматическая, одноствольная с раздельным 2-х сторонним питанием патронами двух назначений;
Темп стрельбы — 150…200 выстр./мин
Масса пушки — 300…350 кг;
Типы боеприпасов — патроны со снарядами бронебойного и осколочно-фугасного зажигательного действия в кассетах емкостью 4 и 5 патронов;
Патроны — унитарные, телескопические;
Масса, кг — 2,7 (ОФЗ); 3,6 (БПС);
Снаряды – стабилизированные вращением;
Масса, кг — 1,3 (ОФЗ); 0,67 (БПС);
Масса ВВ — 0,17 кг;
Масса сердечника, кг — 0,42 (БПС);
Начальная скорость снаряда, м/с — 1640 (БПС); 850 (ОФЗ);
Бронепробиваемость, мм — БПС 150 (на Д=1500 м);

Спустя некоторое время, в начале декабря 2011 года, в городе Коврове, на «Заводе им. Дегтярева» состоялось заседание Комиссии по обороне и оборонной промышленности Общественного комитета сторонников президента РФ, которую возглавлял Д.Рогозин. В рамках этого мероприятия состоялся показ новинок, среди которых была и новая пушка.

Фото новой пушки в своем блоге опубликовал известный эксперт Игорь Коротченко. Однако, почему-то он «постеснялся» сфотографировать поясняющую табличку, а на официальный запрос «Завод им. Дегтярева» так и не ответил. В результате о том, что же мы видим на том фото, остается только гадать. Ясно только одно — пушка на фото Коротченко серьезно отличается от 45 мм АП из патента «Курганмаша» и презентации ВДВ.

В недавнем интервью, так или иначе, Председатель Совета директоров ОАО «Курганмашзавод» Альберт Баков косвенно признал факт существования новой автоматической пушки с новыми боеприпасами, посетовав на то что они еще не готовы. Остается надеяться, что в самое короткое время все проблемы нашими оружейниками будут решены и мы, наконец, получим оружие, позволяющее гордится отечественной «оборонкой».

просмотров